Deletion of β-arrestin 2 in mice affects kappa opioid receptor-mediated behaviors depending on sex, ovariectomy status, and behavioral endpoints

IF 2.5 4区 医学 Q3 NEUROSCIENCES
Peng Huang, Conrad K. Ho, Kathryn Bland, Lee-Yuan Liu-Chen
{"title":"Deletion of β-arrestin 2 in mice affects kappa opioid receptor-mediated behaviors depending on sex, ovariectomy status, and behavioral endpoints","authors":"Peng Huang,&nbsp;Conrad K. Ho,&nbsp;Kathryn Bland,&nbsp;Lee-Yuan Liu-Chen","doi":"10.1016/j.neulet.2025.138154","DOIUrl":null,"url":null,"abstract":"<div><div>We previously demonstrated that in a mouse line expressing a kappa opioid receptor (KOR) mutant with all the four phosphorylation sites mutated to alanines (K4A) the selective KOR agonist U50,488H (U50)-induced anti-scratching tolerance was attenuated in males and conditioned place aversion (CPA) was reduced in females, without affecting acute U50-induced anti-scratching effect and hypo-locomotion (Huang et al, 2022, Neuropharmacology). KOR phosphorylation deficiency in K4A mice would lead to little recruitment of β-arrestin2 (arrb2) and hence greatly reduced arrb2-mediated KOR regulation, downstream signaling and behaviors. Herein we examined effects of arrb2 deletion in mice on KOR-mediated behaviors in arrb2 knockout (arrb2(-/-)) mice vs wildtype (WT) mice. We found that arrb2 deletion enhanced anti-scratching effects produced by acute U50 in males, but not in females. Intriguingly, in ovariectomized (OVX) but not sham-operated females, arrb2 deletion increased U50-induced anti-scratching effect, similar to males. Furthermore, OVX enhanced U50-induced anti-scratching effects specifically in arrb2(-/-) females, but not in WT females. Thus, ovarian hormones-related modulations may obscure the phenotype associated with arrb2(-/-) to promote the KOR-mediated anti-scratching signaling in females, while OVX unmasked it. In contrast, arrb2 deletion did not affect U50-induced CPA and had no effects on anti-scratching tolerance to repeated U50 in either male or female mice. The findings in arrb2(-/-) mice revealed both similarities and differences compared to our previous results in K4A mice. Overall, the effects of arrb2 deletion on KOR-mediated behaviors depended on specific behavioral endpoints, sex, and OVX status.</div></div>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":"850 ","pages":"Article 138154"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304394025000424","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

We previously demonstrated that in a mouse line expressing a kappa opioid receptor (KOR) mutant with all the four phosphorylation sites mutated to alanines (K4A) the selective KOR agonist U50,488H (U50)-induced anti-scratching tolerance was attenuated in males and conditioned place aversion (CPA) was reduced in females, without affecting acute U50-induced anti-scratching effect and hypo-locomotion (Huang et al, 2022, Neuropharmacology). KOR phosphorylation deficiency in K4A mice would lead to little recruitment of β-arrestin2 (arrb2) and hence greatly reduced arrb2-mediated KOR regulation, downstream signaling and behaviors. Herein we examined effects of arrb2 deletion in mice on KOR-mediated behaviors in arrb2 knockout (arrb2(-/-)) mice vs wildtype (WT) mice. We found that arrb2 deletion enhanced anti-scratching effects produced by acute U50 in males, but not in females. Intriguingly, in ovariectomized (OVX) but not sham-operated females, arrb2 deletion increased U50-induced anti-scratching effect, similar to males. Furthermore, OVX enhanced U50-induced anti-scratching effects specifically in arrb2(-/-) females, but not in WT females. Thus, ovarian hormones-related modulations may obscure the phenotype associated with arrb2(-/-) to promote the KOR-mediated anti-scratching signaling in females, while OVX unmasked it. In contrast, arrb2 deletion did not affect U50-induced CPA and had no effects on anti-scratching tolerance to repeated U50 in either male or female mice. The findings in arrb2(-/-) mice revealed both similarities and differences compared to our previous results in K4A mice. Overall, the effects of arrb2 deletion on KOR-mediated behaviors depended on specific behavioral endpoints, sex, and OVX status.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuroscience Letters
Neuroscience Letters 医学-神经科学
CiteScore
5.20
自引率
0.00%
发文量
408
审稿时长
50 days
期刊介绍: Neuroscience Letters is devoted to the rapid publication of short, high-quality papers of interest to the broad community of neuroscientists. Only papers which will make a significant addition to the literature in the field will be published. Papers in all areas of neuroscience - molecular, cellular, developmental, systems, behavioral and cognitive, as well as computational - will be considered for publication. Submission of laboratory investigations that shed light on disease mechanisms is encouraged. Special Issues, edited by Guest Editors to cover new and rapidly-moving areas, will include invited mini-reviews. Occasional mini-reviews in especially timely areas will be considered for publication, without invitation, outside of Special Issues; these un-solicited mini-reviews can be submitted without invitation but must be of very high quality. Clinical studies will also be published if they provide new information about organization or actions of the nervous system, or provide new insights into the neurobiology of disease. NSL does not publish case reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信