Lattice atom-bridged chemical bond interface facilitates charge transfer for boosted photoelectric response.

IF 17.1 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
National Science Review Pub Date : 2024-12-26 eCollection Date: 2025-03-01 DOI:10.1093/nsr/nwae465
Mingwang Liu, Wenhong Yang, Runshi Xiao, Jinli Li, Rong Tan, Ying Qin, Yuxuan Bai, Lirong Zheng, Liuyong Hu, Wenling Gu, Chengzhou Zhu
{"title":"Lattice atom-bridged chemical bond interface facilitates charge transfer for boosted photoelectric response.","authors":"Mingwang Liu, Wenhong Yang, Runshi Xiao, Jinli Li, Rong Tan, Ying Qin, Yuxuan Bai, Lirong Zheng, Liuyong Hu, Wenling Gu, Chengzhou Zhu","doi":"10.1093/nsr/nwae465","DOIUrl":null,"url":null,"abstract":"<p><p>The construction of chemical bonds at heterojunction interfaces currently presents a promising avenue for enhancing photogenerated carrier interfacial transfer. However, the deliberate modulation of these interfacial chemical bonds remains a significant challenge. In this study, we successfully established a <i>p-n</i> junction composed of atomic-level Pt-doped CeO<sub>2</sub> and 2D metalloporphyrins metal-organic framework nanosheets (Pt-CeO<sub>2</sub>/CuTCPP(Fe)), which enables the realization of photoelectric enhancement by regulating the interfacial Fe-O bond and optimizing the built-in electric field. Atomic-level Pt doping in CeO<sub>2</sub> leads to an increased density of oxygen vacancies and lattice mutation, which induces a transition in interfacial Fe-O bonds from adsorbed oxygen (Fe-O<sub>A</sub>) to lattice oxygen (Fe-O<sub>L</sub>). This transition changes the interfacial charge flow pathway from Fe-O<sub>A</sub>-Ce to Fe-O<sub>L</sub>, effectively reducing the carrier transport distance along the atomic-level charge transport highway. This results in a 2.5-fold enhancement in photoelectric performance compared with the CeO<sub>2</sub>/CuTCPP(Fe). Furthermore, leveraging the peroxidase-like activity of the <i>p-n</i> junction, we employed this functional heterojunction interface to develop a photoelectrochemical immunoassay for the sensitive detection of prostate-specific antigens.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"12 3","pages":"nwae465"},"PeriodicalIF":17.1000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11804805/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Science Review","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1093/nsr/nwae465","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The construction of chemical bonds at heterojunction interfaces currently presents a promising avenue for enhancing photogenerated carrier interfacial transfer. However, the deliberate modulation of these interfacial chemical bonds remains a significant challenge. In this study, we successfully established a p-n junction composed of atomic-level Pt-doped CeO2 and 2D metalloporphyrins metal-organic framework nanosheets (Pt-CeO2/CuTCPP(Fe)), which enables the realization of photoelectric enhancement by regulating the interfacial Fe-O bond and optimizing the built-in electric field. Atomic-level Pt doping in CeO2 leads to an increased density of oxygen vacancies and lattice mutation, which induces a transition in interfacial Fe-O bonds from adsorbed oxygen (Fe-OA) to lattice oxygen (Fe-OL). This transition changes the interfacial charge flow pathway from Fe-OA-Ce to Fe-OL, effectively reducing the carrier transport distance along the atomic-level charge transport highway. This results in a 2.5-fold enhancement in photoelectric performance compared with the CeO2/CuTCPP(Fe). Furthermore, leveraging the peroxidase-like activity of the p-n junction, we employed this functional heterojunction interface to develop a photoelectrochemical immunoassay for the sensitive detection of prostate-specific antigens.

晶格原子桥化学键界面有利于电荷转移,提高光电响应。
在异质结界面上构建化学键目前为增强光生载流子界面转移提供了一条有前途的途径。然而,有意调节这些界面化学键仍然是一个重大的挑战。在本研究中,我们成功建立了由原子级pt掺杂CeO2和二维金属卟啉金属有机框架纳米片(Pt-CeO2/CuTCPP(Fe))组成的p-n结,通过调节界面Fe- o键和优化内置电场实现光电增强。在CeO2中原子水平掺杂Pt导致氧空位密度增加和晶格突变,从而导致界面Fe-O键从吸附氧(Fe-OA)向晶格氧(Fe-OL)转变。这种转变改变了Fe-OA-Ce到Fe-OL的界面电荷流动路径,有效地缩短了原子级电荷传输高速公路上载流子的传输距离。与CeO2/CuTCPP(Fe)相比,光电性能提高了2.5倍。此外,利用p-n结的过氧化物酶样活性,我们利用这种功能异质结界面开发了一种用于前列腺特异性抗原敏感检测的光电化学免疫分析法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
National Science Review
National Science Review MULTIDISCIPLINARY SCIENCES-
CiteScore
24.10
自引率
1.90%
发文量
249
审稿时长
13 weeks
期刊介绍: National Science Review (NSR; ISSN abbreviation: Natl. Sci. Rev.) is an English-language peer-reviewed multidisciplinary open-access scientific journal published by Oxford University Press under the auspices of the Chinese Academy of Sciences.According to Journal Citation Reports, its 2021 impact factor was 23.178. National Science Review publishes both review articles and perspectives as well as original research in the form of brief communications and research articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信