Brain-inspired multimodal motion and fine-grained action recognition.

IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Neurorobotics Pub Date : 2025-01-24 eCollection Date: 2024-01-01 DOI:10.3389/fnbot.2024.1502071
Yuening Li, Xiuhua Yang, Changkui Chen
{"title":"Brain-inspired multimodal motion and fine-grained action recognition.","authors":"Yuening Li, Xiuhua Yang, Changkui Chen","doi":"10.3389/fnbot.2024.1502071","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Traditional action recognition methods predominantly rely on a single modality, such as vision or motion, which presents significant limitations when dealing with fine-grained action recognition. These methods struggle particularly with video data containing complex combinations of actions and subtle motion variations.</p><p><strong>Methods: </strong>Typically, they depend on handcrafted feature extractors or simple convolutional neural network (CNN) architectures, which makes effective multimodal fusion challenging. This study introduces a novel architecture called FGM-CLIP (Fine-Grained Motion CLIP) to enhance fine-grained action recognition. FGM-CLIP leverages the powerful capabilities of Contrastive Language-Image Pretraining (CLIP), integrating a fine-grained motion encoder and a multimodal fusion layer to achieve precise end-to-end action recognition. By jointly optimizing visual and motion features, the model captures subtle action variations, resulting in higher classification accuracy in complex video data.</p><p><strong>Results and discussion: </strong>Experimental results demonstrate that FGM-CLIP significantly outperforms existing methods on multiple fine-grained action recognition datasets. Its multimodal fusion strategy notably improves the model's robustness and accuracy, particularly for videos with intricate action patterns.</p>","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"18 ","pages":"1502071"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11802800/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2024.1502071","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Traditional action recognition methods predominantly rely on a single modality, such as vision or motion, which presents significant limitations when dealing with fine-grained action recognition. These methods struggle particularly with video data containing complex combinations of actions and subtle motion variations.

Methods: Typically, they depend on handcrafted feature extractors or simple convolutional neural network (CNN) architectures, which makes effective multimodal fusion challenging. This study introduces a novel architecture called FGM-CLIP (Fine-Grained Motion CLIP) to enhance fine-grained action recognition. FGM-CLIP leverages the powerful capabilities of Contrastive Language-Image Pretraining (CLIP), integrating a fine-grained motion encoder and a multimodal fusion layer to achieve precise end-to-end action recognition. By jointly optimizing visual and motion features, the model captures subtle action variations, resulting in higher classification accuracy in complex video data.

Results and discussion: Experimental results demonstrate that FGM-CLIP significantly outperforms existing methods on multiple fine-grained action recognition datasets. Its multimodal fusion strategy notably improves the model's robustness and accuracy, particularly for videos with intricate action patterns.

大脑启发的多模态运动和细粒度动作识别。
传统的动作识别方法主要依赖于单一的模态,如视觉或运动,这在处理细粒度的动作识别时存在很大的局限性。这些方法尤其难以处理包含复杂动作组合和微妙动作变化的视频数据。方法:通常,它们依赖于手工制作的特征提取器或简单的卷积神经网络(CNN)架构,这使得有效的多模态融合具有挑战性。本研究引入了一种名为FGM-CLIP(细粒度运动CLIP)的新架构来增强细粒度动作识别。FGM-CLIP利用对比语言图像预训练(CLIP)的强大功能,集成了细粒度运动编码器和多模态融合层,以实现精确的端到端动作识别。通过对视觉和动作特征的联合优化,该模型能够捕捉细微的动作变化,从而在复杂的视频数据中获得更高的分类精度。结果和讨论:实验结果表明,在多个细粒度动作识别数据集上,FGM-CLIP显著优于现有方法。它的多模态融合策略显著提高了模型的鲁棒性和准确性,特别是对于具有复杂动作模式的视频。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Neurorobotics
Frontiers in Neurorobotics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCER-ROBOTICS
CiteScore
5.20
自引率
6.50%
发文量
250
审稿时长
14 weeks
期刊介绍: Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide. Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信