{"title":"Insertion of the Fe<sub>B</sub> cofactor in cNORs lacking metal inserting chaperones.","authors":"Sofia Appelgren, Pia Ädelroth","doi":"10.1002/1873-3468.70007","DOIUrl":null,"url":null,"abstract":"<p><p>Cytochrome c-dependent nitric oxide reductase (cNOR) catalyzes the reduction of NO into nitrous oxide (N<sub>2</sub>O), a strong greenhouse gas released from denitrifying microorganisms. The cNOR active site holds an essential non-heme iron, Fe<sub>B</sub>, inserted using the chaperone complex NorQD. However, in Thermus thermophilus, the cNOR (TtcNOR) cluster lacks the norQD genes. Here we investigated Fe<sub>B</sub> insertion into TtcNOR and characterized and compared TtcNOR expressed in Escherichia coli to that natively produced. We show that Fe<sub>B</sub> is present in the natively produced TtcNOR only. Analysis of cNOR operon sequences suggests that a hydrophilic K-pathway analogue is present in cNORs that do not rely on NorQD for iron insertion. We discuss the implications of our data for the evolution of the NOR family.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/1873-3468.70007","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Cytochrome c-dependent nitric oxide reductase (cNOR) catalyzes the reduction of NO into nitrous oxide (N2O), a strong greenhouse gas released from denitrifying microorganisms. The cNOR active site holds an essential non-heme iron, FeB, inserted using the chaperone complex NorQD. However, in Thermus thermophilus, the cNOR (TtcNOR) cluster lacks the norQD genes. Here we investigated FeB insertion into TtcNOR and characterized and compared TtcNOR expressed in Escherichia coli to that natively produced. We show that FeB is present in the natively produced TtcNOR only. Analysis of cNOR operon sequences suggests that a hydrophilic K-pathway analogue is present in cNORs that do not rely on NorQD for iron insertion. We discuss the implications of our data for the evolution of the NOR family.
期刊介绍:
FEBS Letters is one of the world''s leading journals in molecular biology and is renowned both for its quality of content and speed of production. Bringing together the most important developments in the molecular biosciences, FEBS Letters provides an international forum for Minireviews, Research Letters and Hypotheses that merit urgent publication.