Ian López-Cruz, José Luis García-Giménez, Manuel Madrazo, Judit García-Guallarte, Laura Piles, Federico V Pallardó, Arturo Artero
{"title":"Epigenome-wide DNA methylation profiling in septic and non-septic patients with similar infections: potential use as sepsis biomarkers.","authors":"Ian López-Cruz, José Luis García-Giménez, Manuel Madrazo, Judit García-Guallarte, Laura Piles, Federico V Pallardó, Arturo Artero","doi":"10.3389/fcimb.2024.1532417","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Sepsis is a life-threatening condition caused by a dysregulated immune response to infection, leading to organ failure. Despite its significant global burden, the underlying mechanisms of immune dysfunction in sepsis remain incompletely understood. This study explores the role of DNA methylation in white blood cells in sepsis pathogenesis.</p><p><strong>Methods: </strong>A prospective case-control study was conducted to compare DNA methylation profiles between patients with community-acquired sepsis and matched controls who had similar infections but did not develop sepsis. Whole blood samples from these patients were analyzed using the Infinium MethylationEPIC v2.0 kit, enabling genome-wide methylation analysis. Selected genes with differential methylation were validated by pyrosequencing.</p><p><strong>Results: </strong>Significant differential DNA methylation patterns were identified between septic and non-septic individuals uising. Our results suggest that DNA methylation changes are closely linked to the pathophysiological processes of sepsis, influencing immune cell activation, inflammation, and organ dysfunction. The most prominent findings include the hypomethylation of immune-related genes (<i>SERPINA1, AZU1, MPO</i>, and <i>SLX4</i>), which were strongly correlated with clinical severity and inflammatory markers such as SOFA scores and PCT levels. Correlation analyses demonstrated significant associations between the methylation levels of these genes and clinical severity markers, such as SOFA score and PCT levels. Notably, <i>SLX4</i> hypomethylation showed the highest predictive value for poor prognosis (AUC 0.821), while <i>SERPINA1</i> hypomethylation exhibited strong diagnostic potential for sepsis (AUC 0.858).</p><p><strong>Discussion: </strong>Our results underscore the potential of DNA methylation changes, particularly in immune-related genes, to enhance the early detection of sepsis and to stratify patients based on severity. Future research should explore the therapeutic implications of these epigenetic alterations in sepsis care.</p>","PeriodicalId":12458,"journal":{"name":"Frontiers in Cellular and Infection Microbiology","volume":"14 ","pages":"1532417"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11802815/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cellular and Infection Microbiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fcimb.2024.1532417","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Sepsis is a life-threatening condition caused by a dysregulated immune response to infection, leading to organ failure. Despite its significant global burden, the underlying mechanisms of immune dysfunction in sepsis remain incompletely understood. This study explores the role of DNA methylation in white blood cells in sepsis pathogenesis.
Methods: A prospective case-control study was conducted to compare DNA methylation profiles between patients with community-acquired sepsis and matched controls who had similar infections but did not develop sepsis. Whole blood samples from these patients were analyzed using the Infinium MethylationEPIC v2.0 kit, enabling genome-wide methylation analysis. Selected genes with differential methylation were validated by pyrosequencing.
Results: Significant differential DNA methylation patterns were identified between septic and non-septic individuals uising. Our results suggest that DNA methylation changes are closely linked to the pathophysiological processes of sepsis, influencing immune cell activation, inflammation, and organ dysfunction. The most prominent findings include the hypomethylation of immune-related genes (SERPINA1, AZU1, MPO, and SLX4), which were strongly correlated with clinical severity and inflammatory markers such as SOFA scores and PCT levels. Correlation analyses demonstrated significant associations between the methylation levels of these genes and clinical severity markers, such as SOFA score and PCT levels. Notably, SLX4 hypomethylation showed the highest predictive value for poor prognosis (AUC 0.821), while SERPINA1 hypomethylation exhibited strong diagnostic potential for sepsis (AUC 0.858).
Discussion: Our results underscore the potential of DNA methylation changes, particularly in immune-related genes, to enhance the early detection of sepsis and to stratify patients based on severity. Future research should explore the therapeutic implications of these epigenetic alterations in sepsis care.
期刊介绍:
Frontiers in Cellular and Infection Microbiology is a leading specialty journal, publishing rigorously peer-reviewed research across all pathogenic microorganisms and their interaction with their hosts. Chief Editor Yousef Abu Kwaik, University of Louisville is supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
Frontiers in Cellular and Infection Microbiology includes research on bacteria, fungi, parasites, viruses, endosymbionts, prions and all microbial pathogens as well as the microbiota and its effect on health and disease in various hosts. The research approaches include molecular microbiology, cellular microbiology, gene regulation, proteomics, signal transduction, pathogenic evolution, genomics, structural biology, and virulence factors as well as model hosts. Areas of research to counteract infectious agents by the host include the host innate and adaptive immune responses as well as metabolic restrictions to various pathogenic microorganisms, vaccine design and development against various pathogenic microorganisms, and the mechanisms of antibiotic resistance and its countermeasures.