Pierre Cybulski, Maria Bravo, Jim Jui-Kai Chen, Indra Van Zundert, Sandra Krzyzowska, Farsai Taemaitree, Hiroshi Uji-I, Johan Hofkens, Susana Rocha, Beatrice Fortuni
{"title":"Nanoparticle accumulation and penetration in 3D tumor models: the effect of size, shape, and surface charge.","authors":"Pierre Cybulski, Maria Bravo, Jim Jui-Kai Chen, Indra Van Zundert, Sandra Krzyzowska, Farsai Taemaitree, Hiroshi Uji-I, Johan Hofkens, Susana Rocha, Beatrice Fortuni","doi":"10.3389/fcell.2024.1520078","DOIUrl":null,"url":null,"abstract":"<p><p>Preclinical studies have demonstrated that nanoparticles (NPs) hold significant potential for advancing cancer therapy by enhancing therapeutic efficacy while reducing side effects. Their effectiveness in solid tumors is, however, often constrained by insufficient accumulation and penetration. Understanding how the physicochemical properties of NPs - such as size, shape, and surface charge - influence their interaction with cells within the tumor is critical for optimizing NP design. In this study, we addressed the challenge of inconsistent NP behavior by systematically evaluating NP uptake in both 2D and 3D tumor models, and NP penetration in spheroids. Our results showed that larger NPs exhibited higher internalization rates in 2D models but limited penetration in 3D spheroids. Furthermore, negatively charged NPs consistently achieved superior accumulation and deeper penetration than neutral and positively charged NPs. Spherical NPs outperformed rod-shaped NPs in tumor accumulation and penetration. These findings underscore the importance of carefully tailoring NP properties to the complex tumor microenvironment for improved therapeutic outcomes in real tumors.</p>","PeriodicalId":12448,"journal":{"name":"Frontiers in Cell and Developmental Biology","volume":"12 ","pages":"1520078"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11802510/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cell and Developmental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fcell.2024.1520078","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Preclinical studies have demonstrated that nanoparticles (NPs) hold significant potential for advancing cancer therapy by enhancing therapeutic efficacy while reducing side effects. Their effectiveness in solid tumors is, however, often constrained by insufficient accumulation and penetration. Understanding how the physicochemical properties of NPs - such as size, shape, and surface charge - influence their interaction with cells within the tumor is critical for optimizing NP design. In this study, we addressed the challenge of inconsistent NP behavior by systematically evaluating NP uptake in both 2D and 3D tumor models, and NP penetration in spheroids. Our results showed that larger NPs exhibited higher internalization rates in 2D models but limited penetration in 3D spheroids. Furthermore, negatively charged NPs consistently achieved superior accumulation and deeper penetration than neutral and positively charged NPs. Spherical NPs outperformed rod-shaped NPs in tumor accumulation and penetration. These findings underscore the importance of carefully tailoring NP properties to the complex tumor microenvironment for improved therapeutic outcomes in real tumors.
期刊介绍:
Frontiers in Cell and Developmental Biology is a broad-scope, interdisciplinary open-access journal, focusing on the fundamental processes of life, led by Prof Amanda Fisher and supported by a geographically diverse, high-quality editorial board.
The journal welcomes submissions on a wide spectrum of cell and developmental biology, covering intracellular and extracellular dynamics, with sections focusing on signaling, adhesion, migration, cell death and survival and membrane trafficking. Additionally, the journal offers sections dedicated to the cutting edge of fundamental and translational research in molecular medicine and stem cell biology.
With a collaborative, rigorous and transparent peer-review, the journal produces the highest scientific quality in both fundamental and applied research, and advanced article level metrics measure the real-time impact and influence of each publication.