Nazar M Shareef Mahmood, Almas M R Mahmood, Ismail M Maulood
{"title":"The roles of melatonin and potassium channels in relaxation response to ang 1-7 in diabetic rat isolated aorta.","authors":"Nazar M Shareef Mahmood, Almas M R Mahmood, Ismail M Maulood","doi":"10.1007/s10616-025-00720-y","DOIUrl":null,"url":null,"abstract":"<p><p>In a circadian cycle, the pineal gland produces and releases melatonin (MEL) into the bloodstream. By activating distinct melatonin receptors, MEL has been shown to variably change vascular endothelial dysfunction (VED) to various vascular beds. This study investigates the interaction of melatonin (MEL) and potassium ion (K<sup>+</sup>) on angiotensin 1-7 (Ang 1-7) vasorelaxant in streptozotocin (STZ)-induced diabetes mellitus (DM) and non-diabetes mellitus (non-DM) male albino rat aortic rings. The isometric tension of isolated aortic rings was assessed by generating a dose-response curve (DRC) for Ang 1-7 using a PowerLab data acquisition system. Accordingly, three experimental sets were carried out. In the first set the aortic rings were exposed MEL and MEL agonist ramelteon (RAM) and MEL antagonist luzindole (LUZ). In the second set, the aortic rings were exposed to various non-selective calcium activated potassium channel (K<sub>Ca</sub>) blockers, including tetraethylammonium (TEA), a small and large-conductance calcium-activated K<sup>+</sup> [(SK<sub>Ca</sub>) and (BK<sub>Ca</sub>)] channels blocker charybdotoxin (ChTx) and intermediate calcium-activated K<sup>+</sup> channel (IK<sub>Ca</sub>) blocker clotrimazole (CLT). In the third set, the aortic rings were exposed to various selective K<sup>+</sup> channels blockers, including the selective blocker of K<sub>ATP</sub> channel, glibenclamide (Glib), 4-aminopyridine (4-AP), a selective blocker of K<sub>v</sub> channels and BaCl<sub>2</sub>, delayed inward rectifier K<sup>+</sup> channels (K<sub>ir</sub>) blocker. The results highlight the significant role of MEL in modulating vascular reactivity, particularly in the DM aorta. By enhancing the vasorelaxant effects of Ang 1-7 through mechanisms involving its receptors and antioxidant activities, MEL demonstrates its potential to counteract oxidative stress and VED associated with diabetes. These findings advance the understanding of vascular reactivity in diabetes and suggest MEL as a promising therapeutic agent for improving vascular health in diabetic conditions.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"77 2","pages":"55"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11799518/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytotechnology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-025-00720-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In a circadian cycle, the pineal gland produces and releases melatonin (MEL) into the bloodstream. By activating distinct melatonin receptors, MEL has been shown to variably change vascular endothelial dysfunction (VED) to various vascular beds. This study investigates the interaction of melatonin (MEL) and potassium ion (K+) on angiotensin 1-7 (Ang 1-7) vasorelaxant in streptozotocin (STZ)-induced diabetes mellitus (DM) and non-diabetes mellitus (non-DM) male albino rat aortic rings. The isometric tension of isolated aortic rings was assessed by generating a dose-response curve (DRC) for Ang 1-7 using a PowerLab data acquisition system. Accordingly, three experimental sets were carried out. In the first set the aortic rings were exposed MEL and MEL agonist ramelteon (RAM) and MEL antagonist luzindole (LUZ). In the second set, the aortic rings were exposed to various non-selective calcium activated potassium channel (KCa) blockers, including tetraethylammonium (TEA), a small and large-conductance calcium-activated K+ [(SKCa) and (BKCa)] channels blocker charybdotoxin (ChTx) and intermediate calcium-activated K+ channel (IKCa) blocker clotrimazole (CLT). In the third set, the aortic rings were exposed to various selective K+ channels blockers, including the selective blocker of KATP channel, glibenclamide (Glib), 4-aminopyridine (4-AP), a selective blocker of Kv channels and BaCl2, delayed inward rectifier K+ channels (Kir) blocker. The results highlight the significant role of MEL in modulating vascular reactivity, particularly in the DM aorta. By enhancing the vasorelaxant effects of Ang 1-7 through mechanisms involving its receptors and antioxidant activities, MEL demonstrates its potential to counteract oxidative stress and VED associated with diabetes. These findings advance the understanding of vascular reactivity in diabetes and suggest MEL as a promising therapeutic agent for improving vascular health in diabetic conditions.
期刊介绍:
The scope of the Journal includes:
1. The derivation, genetic modification and characterization of cell lines, genetic and phenotypic regulation, control of cellular metabolism, cell physiology and biochemistry related to cell function, performance and expression of cell products.
2. Cell culture techniques, substrates, environmental requirements and optimization, cloning, hybridization and molecular biology, including genomic and proteomic tools.
3. Cell culture systems, processes, reactors, scale-up, and industrial production. Descriptions of the design or construction of equipment, media or quality control procedures, that are ancillary to cellular research.
4. The application of animal/human cells in research in the field of stem cell research including maintenance of stemness, differentiation, genetics, and senescence, cancer research, research in immunology, as well as applications in tissue engineering and gene therapy.
5. The use of cell cultures as a substrate for bioassays, biomedical applications and in particular as a replacement for animal models.