Gu-Wei Ji, Zheng-Gang Xu, Shuo-Chen Liu, Shu-Ya Cao, Chen-Yu Jiao, Ming Lu, Biao Zhang, Yue Yang, Qing Xu, Xiao-Feng Wu, Ke Wang, Yong-Xiang Xia, Xiang-Cheng Li, Xue-Hao Wang
{"title":"Radiogenomics of intrahepatic cholangiocarcinoma predicts immunochemotherapy response and identifies therapeutic target.","authors":"Gu-Wei Ji, Zheng-Gang Xu, Shuo-Chen Liu, Shu-Ya Cao, Chen-Yu Jiao, Ming Lu, Biao Zhang, Yue Yang, Qing Xu, Xiao-Feng Wu, Ke Wang, Yong-Xiang Xia, Xiang-Cheng Li, Xue-Hao Wang","doi":"10.3350/cmh.2024.0895","DOIUrl":null,"url":null,"abstract":"<p><strong>Background & aims: </strong>Identifying patients with intrahepatic cholangiocarcinoma (ICC) likely to benefit from immunochemotherapy, the new front-line treatment, remains challenging. We aimed to unveil a novel radiotranscriptomic signature that can facilitate treatment response prediction by multi-omics integration and multi-scale modelling.</p><p><strong>Methods: </strong>We analyzed bulk, single-cell and spatial transcriptomic data comprising 457 ICC patients to identify an immune-related score (IRS), followed by decoding its spatial immune context. We mapped radiomics profiles onto spatial-specific IRS using machine-learning to define a novel radiotranscriptomic signature, followed by multi-scale and multi-cohort validation covering 331 ICC patients. The signature was further explored for the potential therapeutic target from in vitro to in vivo.</p><p><strong>Results: </strong>We revealed a novel 3-gene (PLAUR, CD40LG and FGFR4) IRS whose down-regulation correlated with better survival and improved sensitivity to immunochemotherapy. We highlighted functional IRS-immune interactions within tumor epithelium, rather than stromal compartment, irrespective of geospatial locations. Machine-learning pipeline identified the optimal 3-feature radiotranscriptomic signature that was well-validated by immunohistochemical assays in molecular cohort, exhibited favorable external prognostic validity with C-index over 0.64 in resection cohort, and predicted treatment response with an area under the curve of up to 0.84 in immunochemotherapy cohort. We also showed that anti-uPAR/PLAUR alone or in combination with anti-programmed cell death protein 1 therapy remarkably curbed tumor growth, using in vitro ICC cell lines and in vivo humanized ICC patient-derived xenograft mouse models.</p><p><strong>Conclusions: </strong>This proof-of-concept study sheds light on the spatially-resolved radiotranscriptomic signature to improve patient selection for emerging immunochemotherapy and high-order immunotherapy combinations in ICC.</p>","PeriodicalId":10275,"journal":{"name":"Clinical and Molecular Hepatology","volume":" ","pages":""},"PeriodicalIF":14.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Molecular Hepatology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3350/cmh.2024.0895","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background & aims: Identifying patients with intrahepatic cholangiocarcinoma (ICC) likely to benefit from immunochemotherapy, the new front-line treatment, remains challenging. We aimed to unveil a novel radiotranscriptomic signature that can facilitate treatment response prediction by multi-omics integration and multi-scale modelling.
Methods: We analyzed bulk, single-cell and spatial transcriptomic data comprising 457 ICC patients to identify an immune-related score (IRS), followed by decoding its spatial immune context. We mapped radiomics profiles onto spatial-specific IRS using machine-learning to define a novel radiotranscriptomic signature, followed by multi-scale and multi-cohort validation covering 331 ICC patients. The signature was further explored for the potential therapeutic target from in vitro to in vivo.
Results: We revealed a novel 3-gene (PLAUR, CD40LG and FGFR4) IRS whose down-regulation correlated with better survival and improved sensitivity to immunochemotherapy. We highlighted functional IRS-immune interactions within tumor epithelium, rather than stromal compartment, irrespective of geospatial locations. Machine-learning pipeline identified the optimal 3-feature radiotranscriptomic signature that was well-validated by immunohistochemical assays in molecular cohort, exhibited favorable external prognostic validity with C-index over 0.64 in resection cohort, and predicted treatment response with an area under the curve of up to 0.84 in immunochemotherapy cohort. We also showed that anti-uPAR/PLAUR alone or in combination with anti-programmed cell death protein 1 therapy remarkably curbed tumor growth, using in vitro ICC cell lines and in vivo humanized ICC patient-derived xenograft mouse models.
Conclusions: This proof-of-concept study sheds light on the spatially-resolved radiotranscriptomic signature to improve patient selection for emerging immunochemotherapy and high-order immunotherapy combinations in ICC.
期刊介绍:
Clinical and Molecular Hepatology is an internationally recognized, peer-reviewed, open-access journal published quarterly in English. Its mission is to disseminate cutting-edge knowledge, trends, and insights into hepatobiliary diseases, fostering an inclusive academic platform for robust debate and discussion among clinical practitioners, translational researchers, and basic scientists. With a multidisciplinary approach, the journal strives to enhance public health, particularly in the resource-limited Asia-Pacific region, which faces significant challenges such as high prevalence of B viral infection and hepatocellular carcinoma. Furthermore, Clinical and Molecular Hepatology prioritizes epidemiological studies of hepatobiliary diseases across diverse regions including East Asia, North Asia, Southeast Asia, Central Asia, South Asia, Southwest Asia, Pacific, Africa, Central Europe, Eastern Europe, Central America, and South America.
The journal publishes a wide range of content, including original research papers, meta-analyses, letters to the editor, case reports, reviews, guidelines, editorials, and liver images and pathology, encompassing all facets of hepatology.