The retinal damage and dazzling effects of three-primary color lasers and their synthetic white laser on rabbit eyes.

IF 1.6 4区 医学 Q3 OPHTHALMOLOGY
Cutaneous and Ocular Toxicology Pub Date : 2025-03-01 Epub Date: 2025-02-09 DOI:10.1080/15569527.2025.2455159
Qiong Ma, Tianchi Xu, Bo Ni, Changke Wang, Hongxiang Kang
{"title":"The retinal damage and dazzling effects of three-primary color lasers and their synthetic white laser on rabbit eyes.","authors":"Qiong Ma, Tianchi Xu, Bo Ni, Changke Wang, Hongxiang Kang","doi":"10.1080/15569527.2025.2455159","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>With the increasing use of diode lasers emitting in the visible light spectrum, concerns about their potential to dazzle and cause eye damage have grown. This study aims to determine the maximum safe exposure levels and evaluate the retinal damage and dazzling effects caused by red, green, blue, and synthetic white lasers.</p><p><strong>Materials and methods: </strong>A chinchilla grey rabbit model was used for experimentation. Lasers with wavelengths of 635 nm (red), 520 nm (green), and 456 nm (blue), along with their combined output as synthetic white light, were directed at the rabbits' eyes for 0.2 s. Retinal damage was assessed using a fundus camera at 1 h and 24 h post-irradiation. Histological analysis was conducted to evaluate tissue changes. The dazzling effect was measured by recording the b-wave recovery time in the electroretinogram 0.1 s after laser exposure.</p><p><strong>Results: </strong>The maximum safe power density levels for red, green, blue, and synthetic white lasers were found to be 140, 60, 35, and 55 mJ/cm<sup>2</sup>, respectively. Exposures exceeding these thresholds resulted in visible retinal damage, including white-coagulated spots, hemorrhages, and corresponding histopathological changes. At an exposure level of 12.0 mJ/cm<sup>2</sup>, the b-wave recovery times for green, blue, and synthetic white light were 9.0, 8.0, and 7.8 s, respectively, while no dazzling effect was observed with the red laser.</p><p><strong>Conclusions: </strong>The synthetic white light laser exhibited slightly inferior safety compared to the green laser but was significantly safer than the blue laser, with fewer dazzling effects. These findings provide valuable insights for the safe use of visible light lasers.</p>","PeriodicalId":11023,"journal":{"name":"Cutaneous and Ocular Toxicology","volume":" ","pages":"72-81"},"PeriodicalIF":1.6000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cutaneous and Ocular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15569527.2025.2455159","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: With the increasing use of diode lasers emitting in the visible light spectrum, concerns about their potential to dazzle and cause eye damage have grown. This study aims to determine the maximum safe exposure levels and evaluate the retinal damage and dazzling effects caused by red, green, blue, and synthetic white lasers.

Materials and methods: A chinchilla grey rabbit model was used for experimentation. Lasers with wavelengths of 635 nm (red), 520 nm (green), and 456 nm (blue), along with their combined output as synthetic white light, were directed at the rabbits' eyes for 0.2 s. Retinal damage was assessed using a fundus camera at 1 h and 24 h post-irradiation. Histological analysis was conducted to evaluate tissue changes. The dazzling effect was measured by recording the b-wave recovery time in the electroretinogram 0.1 s after laser exposure.

Results: The maximum safe power density levels for red, green, blue, and synthetic white lasers were found to be 140, 60, 35, and 55 mJ/cm2, respectively. Exposures exceeding these thresholds resulted in visible retinal damage, including white-coagulated spots, hemorrhages, and corresponding histopathological changes. At an exposure level of 12.0 mJ/cm2, the b-wave recovery times for green, blue, and synthetic white light were 9.0, 8.0, and 7.8 s, respectively, while no dazzling effect was observed with the red laser.

Conclusions: The synthetic white light laser exhibited slightly inferior safety compared to the green laser but was significantly safer than the blue laser, with fewer dazzling effects. These findings provide valuable insights for the safe use of visible light lasers.

三原色激光及其合成白色激光对兔眼视网膜的损伤及炫目效果。
目的:随着在可见光谱中发射二极管激光器的使用越来越多,人们越来越担心它们可能会造成眩光和眼睛损伤。本研究旨在确定红色、绿色、蓝色和合成白色激光的最大安全暴露水平,并评估其对视网膜的损伤和炫目效果。材料与方法:以栗鼠灰兔模型为实验材料。波长分别为635纳米(红色)、520纳米(绿色)和456纳米(蓝色)的激光,连同它们合成的白光的联合输出,照射在兔子的眼睛上0.2秒。在照射后1 h和24 h用眼底相机评估视网膜损伤。通过组织学分析评估组织变化。通过记录激光照射后0.1 s视网膜电图的b波恢复时间来测量眩光效应。结果:红色、绿色、蓝色和合成白色激光器的最大安全功率密度水平分别为140、60、35和55 mJ/cm2。暴露超过这些阈值导致可见的视网膜损伤,包括白色凝固斑、出血和相应的组织病理学改变。在12.0 mJ/cm2的曝光水平下,绿光、蓝光和合成白光的b波恢复时间分别为9.0、8.0和7.8 s,而红光激光没有出现眩光效应。结论:合成白光激光的安全性略低于绿色激光,但明显优于蓝色激光,且刺眼效果更少。这些发现为安全使用可见光激光器提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
6.20%
发文量
40
审稿时长
1 months
期刊介绍: Cutaneous and Ocular Toxicology is an international, peer-reviewed journal that covers all types of harm to cutaneous and ocular systems. Areas of particular interest include pharmaceutical and medical products; consumer, personal care, and household products; and issues in environmental and occupational exposures. In addition to original research papers, reviews and short communications are invited, as well as concise, relevant, and critical reviews of topics of contemporary significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信