{"title":"LbCas12a-based DNA POCT facilitates fast genotyping on farm.","authors":"Xiaolong Li, Zhentao Han, Peihua Guo, Xiaoqian Zhang, Yixuan Hu, Jianhua Cao","doi":"10.1016/j.talanta.2025.127672","DOIUrl":null,"url":null,"abstract":"<p><p>Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 12a (CRISPR/Cas12a) detection system is now widely used for nucleic acid detection and disease diagnosis. However, there are still fewer detections for single nucleotide polymorphisms (SNPs) and limited diversified detection systems for pathogen and SNP sites detection, which greatly limits their applications. Obviously, the development of a more diversified and convenient suite of detection tools is essential to unlock the full potential of CRISPR/Cas12a technology and to expand its applications across a wider range of scenarios. We have successfully developed an integrated CRISPR/Cas12a assay system. This system introduces crRNA during protein expression, reducing the number of steps and reaction time by adding only a fluorescent reporter gene and target DNA during subsequent detection. It enables on-site visualization of the assay in combination with a Recombinase polymerase amplification (RPA) reaction. Combined with the RPA reaction, we are able to rapidly detect African swine fever virus (ASFV) pathogens with high specificity. The system also enables genotyping of the SNP site of the porcine prolificacy-associated estrogen receptor (ESR) gene and the sheep prolificacy-associated Fecundity booroola (FecB) gene. Visualization is possible up to a final concentration of 3 nM, and effective differentiation of low concentrations within the concentration range of the assay. The integrated CRISPR/Cas12a assay system we developed has a robust design that ensures high-fidelity genotyping and pathogen detection are no longer restricted to the lab, allowing for rapid field analysis, which is crucial for timely interventions in agricultural and clinical settings. In addition, it has the advantages of low cost, easy operation and visualization of results.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"287 ","pages":"127672"},"PeriodicalIF":5.6000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2025.127672","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 12a (CRISPR/Cas12a) detection system is now widely used for nucleic acid detection and disease diagnosis. However, there are still fewer detections for single nucleotide polymorphisms (SNPs) and limited diversified detection systems for pathogen and SNP sites detection, which greatly limits their applications. Obviously, the development of a more diversified and convenient suite of detection tools is essential to unlock the full potential of CRISPR/Cas12a technology and to expand its applications across a wider range of scenarios. We have successfully developed an integrated CRISPR/Cas12a assay system. This system introduces crRNA during protein expression, reducing the number of steps and reaction time by adding only a fluorescent reporter gene and target DNA during subsequent detection. It enables on-site visualization of the assay in combination with a Recombinase polymerase amplification (RPA) reaction. Combined with the RPA reaction, we are able to rapidly detect African swine fever virus (ASFV) pathogens with high specificity. The system also enables genotyping of the SNP site of the porcine prolificacy-associated estrogen receptor (ESR) gene and the sheep prolificacy-associated Fecundity booroola (FecB) gene. Visualization is possible up to a final concentration of 3 nM, and effective differentiation of low concentrations within the concentration range of the assay. The integrated CRISPR/Cas12a assay system we developed has a robust design that ensures high-fidelity genotyping and pathogen detection are no longer restricted to the lab, allowing for rapid field analysis, which is crucial for timely interventions in agricultural and clinical settings. In addition, it has the advantages of low cost, easy operation and visualization of results.
期刊介绍:
Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome.
Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.