Kübra Kahremanoğlu, Karol Jaroch, Paulina Szeliska, Wojciech Filipiak, Bartłomiej Charemski, Karolina Żuchowska, Enes Çetin, Ahmet E Eroğlu, Barbara Bojko, Ezel Boyaci
{"title":"Assessment of thermal and solvent stable SPME fibers for metabolomics studies performed in living systems.","authors":"Kübra Kahremanoğlu, Karol Jaroch, Paulina Szeliska, Wojciech Filipiak, Bartłomiej Charemski, Karolina Żuchowska, Enes Çetin, Ahmet E Eroğlu, Barbara Bojko, Ezel Boyaci","doi":"10.1016/j.talanta.2025.127646","DOIUrl":null,"url":null,"abstract":"<p><p>Solid phase microextraction (SPME), as a sampling/sample preparation technique, offers unique solutions for the most challenging applications, including metabolomics studies of living systems. However, for global metabolomics it is critical to use an SPME sampler facilitating the extraction of both volatiles and nonvolatiles, which at the same time is compatible with thermal and solvent-assisted desorption. As a promising universal coating, recently hydrophilic-lipophilic balanced (HLB) particles immobilized in PTFE have been introduced as a new SPME sampler to provide a wide-range of analyte coverage and compatibility with solvent and thermal desorption. Thus, making it suitable for both gas and liquid chromatography (GC/LC) based applications. However, its potential in metabolomics has not been investigated to date. In this study, HLB/PTFE SPME fibers were prepared, evaluated with selected polar and non-polar metabolites relevant to biological systems, and validated for cell-line studies. The validation proved that these fibers can extract a wide-range of molecules (LogP: 4.2 to 15.6) with acceptable accuracy (≤19% RE%) and repeatability (intra-day ≤17% and inter-day 12% RSD%). The LOQ was determined to vary between 150.0 and 500.0 ng/mL. Upon validation, the fibers were used in a proof-of-concept study for extraction of endometabolome and exometabolome of melanoma B16F10 and lung cancer LL2 cell lines. The metabolome studies showed that HLB/PTFE fibers provide lower coverage, but for some compounds higher extraction efficiency compared to HLB/PAN fibers used in LC-based metabolomics. Fibers also proved suitable for GC-MS analysis, allowing for the detection of 36 volatile organic compounds in the headspace of the cell lines and RPMI medium.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"287 ","pages":"127646"},"PeriodicalIF":5.6000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2025.127646","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Solid phase microextraction (SPME), as a sampling/sample preparation technique, offers unique solutions for the most challenging applications, including metabolomics studies of living systems. However, for global metabolomics it is critical to use an SPME sampler facilitating the extraction of both volatiles and nonvolatiles, which at the same time is compatible with thermal and solvent-assisted desorption. As a promising universal coating, recently hydrophilic-lipophilic balanced (HLB) particles immobilized in PTFE have been introduced as a new SPME sampler to provide a wide-range of analyte coverage and compatibility with solvent and thermal desorption. Thus, making it suitable for both gas and liquid chromatography (GC/LC) based applications. However, its potential in metabolomics has not been investigated to date. In this study, HLB/PTFE SPME fibers were prepared, evaluated with selected polar and non-polar metabolites relevant to biological systems, and validated for cell-line studies. The validation proved that these fibers can extract a wide-range of molecules (LogP: 4.2 to 15.6) with acceptable accuracy (≤19% RE%) and repeatability (intra-day ≤17% and inter-day 12% RSD%). The LOQ was determined to vary between 150.0 and 500.0 ng/mL. Upon validation, the fibers were used in a proof-of-concept study for extraction of endometabolome and exometabolome of melanoma B16F10 and lung cancer LL2 cell lines. The metabolome studies showed that HLB/PTFE fibers provide lower coverage, but for some compounds higher extraction efficiency compared to HLB/PAN fibers used in LC-based metabolomics. Fibers also proved suitable for GC-MS analysis, allowing for the detection of 36 volatile organic compounds in the headspace of the cell lines and RPMI medium.
期刊介绍:
Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome.
Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.