Annealing synchronizes the TOM complex with Tom7 in a new orientation

IF 3.8 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Liuyan Yang , Mingdong Liu , Lei Qi , Yunhui Liu , Xubo Lin , Yu-Zhong Zhang , Qing-Tao Shen
{"title":"Annealing synchronizes the TOM complex with Tom7 in a new orientation","authors":"Liuyan Yang ,&nbsp;Mingdong Liu ,&nbsp;Lei Qi ,&nbsp;Yunhui Liu ,&nbsp;Xubo Lin ,&nbsp;Yu-Zhong Zhang ,&nbsp;Qing-Tao Shen","doi":"10.1016/j.abb.2025.110329","DOIUrl":null,"url":null,"abstract":"<div><div>Annealing is an ideal approach to synchronizing soluble proteins into their minimum-energy states via tandem heating and cooling treatments. Like soluble proteins, many membrane proteins also suffer intrinsic structural flexibility, the major obstacle to high-resolution structural determination. How to apply annealing onto membrane proteins remains unexplored. Here, we utilized the translocase of the outer mitochondrial membrane (TOM) as the model and investigated the ideal annealing conditions for membrane proteins. After structural determination via cryo-electron microscopy, we indicated that fast cooling the heated TOM complex to 0 °C can significantly improve the local resolution compared with the unannealed one. Structural analyses showed that annealing renders the TOM complex into a new conformation with its Tom7 α1 helix from a reclining position on the membrane surface to a lying orientation, accompanied by the loop between β6 and β7 in Tom40, flipping outward from the Tom40 β-barrel, ideal for preprotein translocation. In all, our results demonstrate the role of annealing in synchronizing membrane proteins and unveil unidentified conformations of the TOM complex.</div></div>","PeriodicalId":8174,"journal":{"name":"Archives of biochemistry and biophysics","volume":"766 ","pages":"Article 110329"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of biochemistry and biophysics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003986125000426","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Annealing is an ideal approach to synchronizing soluble proteins into their minimum-energy states via tandem heating and cooling treatments. Like soluble proteins, many membrane proteins also suffer intrinsic structural flexibility, the major obstacle to high-resolution structural determination. How to apply annealing onto membrane proteins remains unexplored. Here, we utilized the translocase of the outer mitochondrial membrane (TOM) as the model and investigated the ideal annealing conditions for membrane proteins. After structural determination via cryo-electron microscopy, we indicated that fast cooling the heated TOM complex to 0 °C can significantly improve the local resolution compared with the unannealed one. Structural analyses showed that annealing renders the TOM complex into a new conformation with its Tom7 α1 helix from a reclining position on the membrane surface to a lying orientation, accompanied by the loop between β6 and β7 in Tom40, flipping outward from the Tom40 β-barrel, ideal for preprotein translocation. In all, our results demonstrate the role of annealing in synchronizing membrane proteins and unveil unidentified conformations of the TOM complex.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Archives of biochemistry and biophysics
Archives of biochemistry and biophysics 生物-生化与分子生物学
CiteScore
7.40
自引率
0.00%
发文量
245
审稿时长
26 days
期刊介绍: Archives of Biochemistry and Biophysics publishes quality original articles and reviews in the developing areas of biochemistry and biophysics. Research Areas Include: • Enzyme and protein structure, function, regulation. Folding, turnover, and post-translational processing • Biological oxidations, free radical reactions, redox signaling, oxygenases, P450 reactions • Signal transduction, receptors, membrane transport, intracellular signals. Cellular and integrated metabolism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信