{"title":"The Idiot's Guide to Effective Population Size.","authors":"Robin S Waples","doi":"10.1111/mec.17670","DOIUrl":null,"url":null,"abstract":"<p><p>This is a reference manual for the elegant, yet hideously complex concept of effective population size (N<sub>e</sub>), inspired by a classic, self-published manual of automotive repair 'for the compleat idiot'. The Guide is timely, given the recent Kunming-Montreal Global Biodiversity Framework, where 196 Parties committed to tracking genetic diversity-and estimating N<sub>e</sub>-for all species. N<sub>e</sub> is a human construct, but a useful one that allows us to capture diverse aspects of an organism's biology in a single number. The Guide collates in one location factual information about effective population size, with a focus on topics of practical relevance to scientists and managers studying real populations; it covers definition, computation and estimation of effective size, both demographically and genetically. As appropriate, the reader is directed to other primary sources for more details. A 'Don't Do These Things' section lists several ill-advised approaches to dealing with N<sub>e</sub>, and an Appendix provides useful tools and practical suggestions for interested users. A special section considers both possibilities and challenges presented by the genomics revolution. Availability of vast numbers of genetic markers increases precision, but less than some might think, and simultaneously introduces new challenges involving filtering and bioinformatics processing. As annotated genomes become more common for non-model species, opportunities are opened to address qualitatively different questions, including reconstructing historical changes in N<sub>e</sub> through time.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17670"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mec.17670","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This is a reference manual for the elegant, yet hideously complex concept of effective population size (Ne), inspired by a classic, self-published manual of automotive repair 'for the compleat idiot'. The Guide is timely, given the recent Kunming-Montreal Global Biodiversity Framework, where 196 Parties committed to tracking genetic diversity-and estimating Ne-for all species. Ne is a human construct, but a useful one that allows us to capture diverse aspects of an organism's biology in a single number. The Guide collates in one location factual information about effective population size, with a focus on topics of practical relevance to scientists and managers studying real populations; it covers definition, computation and estimation of effective size, both demographically and genetically. As appropriate, the reader is directed to other primary sources for more details. A 'Don't Do These Things' section lists several ill-advised approaches to dealing with Ne, and an Appendix provides useful tools and practical suggestions for interested users. A special section considers both possibilities and challenges presented by the genomics revolution. Availability of vast numbers of genetic markers increases precision, but less than some might think, and simultaneously introduces new challenges involving filtering and bioinformatics processing. As annotated genomes become more common for non-model species, opportunities are opened to address qualitatively different questions, including reconstructing historical changes in Ne through time.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms