Carlotta Valle, Giorgio Grillo, Emanuela Calcio Gaudino, Paola Ponsetto, Roberto Mazzoli, Giulia Bonavita, Pietro Vitale, Enrica Pessione, Emilia Garcia-Moruno, Antonella Costantini, Giancarlo Cravotto, Silvia Tabasso
{"title":"Grape Stalks Valorization Towards Circular Economy: A Cascade Biorefinery Strategy.","authors":"Carlotta Valle, Giorgio Grillo, Emanuela Calcio Gaudino, Paola Ponsetto, Roberto Mazzoli, Giulia Bonavita, Pietro Vitale, Enrica Pessione, Emilia Garcia-Moruno, Antonella Costantini, Giancarlo Cravotto, Silvia Tabasso","doi":"10.1002/cssc.202402536","DOIUrl":null,"url":null,"abstract":"<p><p>Lignocellulosic biomasses have the potential to generate by-products with biological activity (i.e., polyphenols) as well as biopolymers (i.e., cellulose, hemicellulose, pectins, lignin). The wine industry is one of the pillars of Italian agri-food sector. Nevertheless, large quantities of by-products such as grape stems are produced, which are usually disposed of at a cost, and therefore represent an attractive negative-cost feedstock for biorefinery. In this work, a sequential protocol for biomass valorization is proposed, characterized by a multidisciplinary strategy using enabling technologies and subcritical water as a green solvent, where physical/chemical treatments synergistically interact with biological treatments. The first phase involved the sequential fractionation of grape stalks, obtaining several product streams rich in polyphenols, hemicellulose, pectin (13.15% of cumulative yield on biomass), lignin and cellulose. A membrane treatment was employed to recycle materials within the process. Finally, the cellulose-rich residue was exploited as a fermentation substrate for the last step, producing up to 5.8 g/L of lactic acid by harnessing suitably engineered Clostridium thermocellum strains. The polyphenolic fraction successfully inhibited the growth of Brettanomyces bruxellensis and Acetobacter pasteurianus, microorganisms responsible for major wine off-flavors. Globally, this study represents a proof-of-concept of a second-generation biorefining process based on locally available waste biomass.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402536"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202402536","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Lignocellulosic biomasses have the potential to generate by-products with biological activity (i.e., polyphenols) as well as biopolymers (i.e., cellulose, hemicellulose, pectins, lignin). The wine industry is one of the pillars of Italian agri-food sector. Nevertheless, large quantities of by-products such as grape stems are produced, which are usually disposed of at a cost, and therefore represent an attractive negative-cost feedstock for biorefinery. In this work, a sequential protocol for biomass valorization is proposed, characterized by a multidisciplinary strategy using enabling technologies and subcritical water as a green solvent, where physical/chemical treatments synergistically interact with biological treatments. The first phase involved the sequential fractionation of grape stalks, obtaining several product streams rich in polyphenols, hemicellulose, pectin (13.15% of cumulative yield on biomass), lignin and cellulose. A membrane treatment was employed to recycle materials within the process. Finally, the cellulose-rich residue was exploited as a fermentation substrate for the last step, producing up to 5.8 g/L of lactic acid by harnessing suitably engineered Clostridium thermocellum strains. The polyphenolic fraction successfully inhibited the growth of Brettanomyces bruxellensis and Acetobacter pasteurianus, microorganisms responsible for major wine off-flavors. Globally, this study represents a proof-of-concept of a second-generation biorefining process based on locally available waste biomass.
期刊介绍:
ChemSusChem
Impact Factor (2016): 7.226
Scope:
Interdisciplinary journal
Focuses on research at the interface of chemistry and sustainability
Features the best research on sustainability and energy
Areas Covered:
Chemistry
Materials Science
Chemical Engineering
Biotechnology