{"title":"Ball-milled Ni@Mo<sub>2</sub>C/C nanocomposites as efficient electrocatalysts for urea oxidation.","authors":"Dilip Kumar Tiwari, Tapan Kumar Ghosh, Anju Vakakuzhiyil Gopinathan, Ranga Rao Gangavarapu","doi":"10.1007/s11356-025-36030-1","DOIUrl":null,"url":null,"abstract":"<p><p>Urea oxidation reaction (UOR) has been identified as a promising method for hydrogen production and the remediation of urea-rich wastewater by electrochemical techniques. In the present work, Ni/C and Ni@Mo<sub>2</sub>C(x)/C electrocatalysts (x = 0.1, 0.2, 0.4, and 0.6 mol fraction of Mo<sub>2</sub>C in Ni@Mo<sub>2</sub>C) are prepared by ball milling method followed by annealing at 800 °C for 2 h under nitrogen atmosphere. Electrooxidation of urea is carried out using these electrocatalysts in an alkaline solution. Among them, the Ni@Mo<sub>2</sub>C(0.4)/C catalyst shows a maximum current density of 96.5 mA cm<sup>-2</sup> at 1.7 V (versus RHE) in 1 M KOH and 0.33 M urea electrolyte. The Ni@Mo<sub>2</sub>C(0.4)/C catalyst exhibits better catalytic activity, low overpotential, and charge transfer resistance with extremely low Tafel slope compared to other compositions for UOR. The synergistic electronic effect between Ni and Mo<sub>2</sub>C components is responsible for generating active sites and facilitating the catalytic activity of UOR. The Ni@Mo<sub>2</sub>C(x)/C electrocatalysts are promising for treating urea-rich wastewaters and for use as a substitute for suppressing OER in water-splitting reactions.</p>","PeriodicalId":545,"journal":{"name":"Environmental Science and Pollution Research","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11356-025-36030-1","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Urea oxidation reaction (UOR) has been identified as a promising method for hydrogen production and the remediation of urea-rich wastewater by electrochemical techniques. In the present work, Ni/C and Ni@Mo2C(x)/C electrocatalysts (x = 0.1, 0.2, 0.4, and 0.6 mol fraction of Mo2C in Ni@Mo2C) are prepared by ball milling method followed by annealing at 800 °C for 2 h under nitrogen atmosphere. Electrooxidation of urea is carried out using these electrocatalysts in an alkaline solution. Among them, the Ni@Mo2C(0.4)/C catalyst shows a maximum current density of 96.5 mA cm-2 at 1.7 V (versus RHE) in 1 M KOH and 0.33 M urea electrolyte. The Ni@Mo2C(0.4)/C catalyst exhibits better catalytic activity, low overpotential, and charge transfer resistance with extremely low Tafel slope compared to other compositions for UOR. The synergistic electronic effect between Ni and Mo2C components is responsible for generating active sites and facilitating the catalytic activity of UOR. The Ni@Mo2C(x)/C electrocatalysts are promising for treating urea-rich wastewaters and for use as a substitute for suppressing OER in water-splitting reactions.
期刊介绍:
Environmental Science and Pollution Research (ESPR) serves the international community in all areas of Environmental Science and related subjects with emphasis on chemical compounds. This includes:
- Terrestrial Biology and Ecology
- Aquatic Biology and Ecology
- Atmospheric Chemistry
- Environmental Microbiology/Biobased Energy Sources
- Phytoremediation and Ecosystem Restoration
- Environmental Analyses and Monitoring
- Assessment of Risks and Interactions of Pollutants in the Environment
- Conservation Biology and Sustainable Agriculture
- Impact of Chemicals/Pollutants on Human and Animal Health
It reports from a broad interdisciplinary outlook.