Brunno A Salvatti, Isabela T Lima, Caio M Pacheco, Rodrigo O M A de Souza, Marcelo A Chagas, Adolfo H Moraes, Amanda S de Miranda
{"title":"Exploring lipase regioselectivity: synthesis of regioisomeric acetoxyhydroxynaphthalenes.","authors":"Brunno A Salvatti, Isabela T Lima, Caio M Pacheco, Rodrigo O M A de Souza, Marcelo A Chagas, Adolfo H Moraes, Amanda S de Miranda","doi":"10.1039/d4ob01921k","DOIUrl":null,"url":null,"abstract":"<p><p>The naphthalene ring is a moiety featured by many bioactive agents. Dihydroxynaphthalenes are readily available substances but their use for the synthesis of a series of compounds results in limited chemical diversity due to the similar reactivity of the phenolic hydroxyl groups. Herein, we describe the use of regioselective lipases in acylation and hydrolysis reactions to synthesize 5 different regioisomeric acetoxyhydroxynaphthalenes on a 91-122 mg scale with moderate to good yields (50-78%) from 1,3-, 1,6- and 1,7-dihydroxynaphthalenes and their corresponding diacetates. Reactions were optimised through medium engineering, thus providing information on the impact of different organic solvents on conversion and selectivity. Additionally, computational studies using molecular dynamic simulations were performed and suggested a correlation between the regiopreference displayed by lipase CAL-B in hydrolytic reactions and a distance ≤3.2 Å between the most reactive carbonyl group and the Ser-105 residue on the catalytic site. The herein described enzymatic methods may allow for introducing two different moieties at the naphthalene ring through a protection-deprotection strategy, thus allowing for better exploitation of the chemical space.</p>","PeriodicalId":96,"journal":{"name":"Organic & Biomolecular Chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic & Biomolecular Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4ob01921k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
The naphthalene ring is a moiety featured by many bioactive agents. Dihydroxynaphthalenes are readily available substances but their use for the synthesis of a series of compounds results in limited chemical diversity due to the similar reactivity of the phenolic hydroxyl groups. Herein, we describe the use of regioselective lipases in acylation and hydrolysis reactions to synthesize 5 different regioisomeric acetoxyhydroxynaphthalenes on a 91-122 mg scale with moderate to good yields (50-78%) from 1,3-, 1,6- and 1,7-dihydroxynaphthalenes and their corresponding diacetates. Reactions were optimised through medium engineering, thus providing information on the impact of different organic solvents on conversion and selectivity. Additionally, computational studies using molecular dynamic simulations were performed and suggested a correlation between the regiopreference displayed by lipase CAL-B in hydrolytic reactions and a distance ≤3.2 Å between the most reactive carbonyl group and the Ser-105 residue on the catalytic site. The herein described enzymatic methods may allow for introducing two different moieties at the naphthalene ring through a protection-deprotection strategy, thus allowing for better exploitation of the chemical space.
期刊介绍:
Organic & Biomolecular Chemistry is an international journal using integrated research in chemistry-organic chemistry. Founded in 2003 by the Royal Society of Chemistry, the journal is published in Semimonthly issues and has been indexed by SCIE, a leading international database. The journal focuses on the key research and cutting-edge progress in the field of chemistry-organic chemistry, publishes and reports the research results in this field in a timely manner, and is committed to becoming a window and platform for rapid academic exchanges among peers in this field. The journal's impact factor in 2023 is 2.9, and its CiteScore is 5.5.