Predicting suicide attempts among US Army soldiers using information available at the time of periodic health assessments

James A. Naifeh, Emily R. Edwards, Kate H. Bentley, Sarah M. Gildea, Chris J. Kennedy, Andrew J. King, Evan M. Kleiman, Alex Luedtke, Thomas H. Nassif, Matthew K. Nock, Nancy A. Sampson, Nur Hani Zainal, Murray B. Stein, Vincent F. Capaldi, Robert J. Ursano, Ronald C. Kessler
{"title":"Predicting suicide attempts among US Army soldiers using information available at the time of periodic health assessments","authors":"James A. Naifeh, Emily R. Edwards, Kate H. Bentley, Sarah M. Gildea, Chris J. Kennedy, Andrew J. King, Evan M. Kleiman, Alex Luedtke, Thomas H. Nassif, Matthew K. Nock, Nancy A. Sampson, Nur Hani Zainal, Murray B. Stein, Vincent F. Capaldi, Robert J. Ursano, Ronald C. Kessler","doi":"10.1038/s44220-024-00360-9","DOIUrl":null,"url":null,"abstract":"The value of population screening for suicide risk remains unclear. The US Army’s annual medical examination, the Periodic Health Assessment (PHA), screens for suicidality and other mental and physical health problems. Here in our 2014–2019 cohort study we used PHA and Army administrative data (n = 1,042,796 PHAs from 452,473 soldiers) to develop a model to predict 6-month nonfatal and fatal suicide attempts (SAs). The model was designed to establish eligibility for a planned high-risk SA prevention intervention. The PHA suicide risk screening questions had limited value, as 95% of SAs occurred among soldiers who denied suicidality. However, a simple least absolute shrinkage and selection operator (LASSO) penalized regression model that included a wide range of administrative predictors had good test sample discrimination (0.794 (standard error 0.009) area under the receiver operating characteristic curve) and calibration (integrated calibration index 0.0001). The 25% of soldiers at highest predicted risk accounted for 69.5% of 6-month SAs, supporting use of the model to target preventive interventions. A machine learning model incorporating a wide range of administrative medical and demographic data from the US Army outperformed suicide risk screening questions in predicting suicide attempts over the 6 month period following soldiers’ annual medical examinations.","PeriodicalId":74247,"journal":{"name":"Nature mental health","volume":"3 2","pages":"242-252"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature mental health","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44220-024-00360-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The value of population screening for suicide risk remains unclear. The US Army’s annual medical examination, the Periodic Health Assessment (PHA), screens for suicidality and other mental and physical health problems. Here in our 2014–2019 cohort study we used PHA and Army administrative data (n = 1,042,796 PHAs from 452,473 soldiers) to develop a model to predict 6-month nonfatal and fatal suicide attempts (SAs). The model was designed to establish eligibility for a planned high-risk SA prevention intervention. The PHA suicide risk screening questions had limited value, as 95% of SAs occurred among soldiers who denied suicidality. However, a simple least absolute shrinkage and selection operator (LASSO) penalized regression model that included a wide range of administrative predictors had good test sample discrimination (0.794 (standard error 0.009) area under the receiver operating characteristic curve) and calibration (integrated calibration index 0.0001). The 25% of soldiers at highest predicted risk accounted for 69.5% of 6-month SAs, supporting use of the model to target preventive interventions. A machine learning model incorporating a wide range of administrative medical and demographic data from the US Army outperformed suicide risk screening questions in predicting suicide attempts over the 6 month period following soldiers’ annual medical examinations.

Abstract Image

利用定期健康评估时可获得的信息预测美国陆军士兵的自杀企图
对自杀风险进行人群筛查的价值尚不清楚。美国陆军的年度体检,定期健康评估(PHA),筛选自杀和其他精神和身体健康问题。在我们2014-2019年的队列研究中,我们使用PHA和陆军行政数据(n = 1,042,796名PHA,来自452,473名士兵)来开发一个模型,以预测6个月的非致命性和致命性自杀企图(sa)。该模型旨在确定计划的高风险SA预防干预的资格。PHA自杀风险筛查问题的价值有限,因为95%的sa发生在否认自杀的士兵中。然而,简单的最小绝对收缩和选择算子(LASSO)惩罚回归模型包含了广泛的管理预测因子,具有良好的测试样本判别(受试者工作特征曲线下的0.794(标准误差0.009)面积)和校准(综合校准指数0.0001)。25%预测风险最高的士兵占6个月sa的69.5%,支持使用该模型进行针对性预防干预。在预测士兵年度体检后6个月内的自杀企图方面,一种机器学习模型结合了来自美国陆军的广泛行政医疗和人口统计数据,其表现优于自杀风险筛查问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信