Ajay D. Pingale, Govind Waghmare, Anil S. Katarkar, Sagar Wankhede, Swapan Bhaumik, Sachin Belgamwar
{"title":"Experimental Investigation of Pool Boiling Heat Transfer on Cu─Al2O3 Composite Coated Patterned Surfaces Using Refrigerant R-134a","authors":"Ajay D. Pingale, Govind Waghmare, Anil S. Katarkar, Sagar Wankhede, Swapan Bhaumik, Sachin Belgamwar","doi":"10.1002/htj.23235","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The present study investigates pool boiling heat transfer (PBHT) of R-134a on Cu─Al<sub>2</sub>O<sub>3</sub> composite-coated patterned surfaces (CPS<sub>I</sub>, CPS<sub>II</sub>, CPS<sub>III</sub>, and CPS<sub>IV</sub>). Using a wire EDM method, four different types of copper patterned surfaces (PS<sub>I</sub>, PS<sub>II</sub>, PS<sub>III</sub>, and PS<sub>IV</sub>) were manufactured. Comparing the heat transfer coefficients (HTCs) of the Cu─Al<sub>2</sub>O<sub>3</sub> composite-coated patterned surfaces to the uncoated Cu surfaces, a notable enhancement was observed. The maximum HTC improvements of 162%, 178%, 189%, and 211% were observed for CPS<sub>I</sub>, CPS<sub>II</sub>, CPS<sub>III</sub>, and CPS<sub>IV</sub>, respectively, when compared with bare Cu surfaces. These results demonstrate the effectiveness of these treatments in enhancing heat transfer compared to bare copper surfaces. The enhancement in PBHT is mainly due to the integration of porous Cu─Al<sub>2</sub>O<sub>3</sub> composite coating with patterned surfaces which resulted in a larger heat transfer area, improved capillary action, and a substantial increase in active nucleation sites.</p>\n </div>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"54 2","pages":"1476-1487"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/htj.23235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
The present study investigates pool boiling heat transfer (PBHT) of R-134a on Cu─Al2O3 composite-coated patterned surfaces (CPSI, CPSII, CPSIII, and CPSIV). Using a wire EDM method, four different types of copper patterned surfaces (PSI, PSII, PSIII, and PSIV) were manufactured. Comparing the heat transfer coefficients (HTCs) of the Cu─Al2O3 composite-coated patterned surfaces to the uncoated Cu surfaces, a notable enhancement was observed. The maximum HTC improvements of 162%, 178%, 189%, and 211% were observed for CPSI, CPSII, CPSIII, and CPSIV, respectively, when compared with bare Cu surfaces. These results demonstrate the effectiveness of these treatments in enhancing heat transfer compared to bare copper surfaces. The enhancement in PBHT is mainly due to the integration of porous Cu─Al2O3 composite coating with patterned surfaces which resulted in a larger heat transfer area, improved capillary action, and a substantial increase in active nucleation sites.