Simulation of Magnetic Field Effects on Heat and Mass Transfer in a Porous Spline Half-Cylinder Using ANN and ISPH Approaches

IF 2.8 Q2 THERMODYNAMICS
Heat Transfer Pub Date : 2024-11-18 DOI:10.1002/htj.23224
Munirah Aali Alotaibi, Weaam Alhejaili, Samiyah Almalki, Abdelraheem M. Aly
{"title":"Simulation of Magnetic Field Effects on Heat and Mass Transfer in a Porous Spline Half-Cylinder Using ANN and ISPH Approaches","authors":"Munirah Aali Alotaibi,&nbsp;Weaam Alhejaili,&nbsp;Samiyah Almalki,&nbsp;Abdelraheem M. Aly","doi":"10.1002/htj.23224","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study utilizes Artificial Neural Networks (ANNs) and Incompressible Smoothed Particle Hydrodynamics (ISPH) simulations to explore the effects of magnetic fields on heat and mass transfer in a porous spline half-cylinder filled with Nano-Encapsulated Phase Change Material (NEPCM). Simulations were conducted over a range of physical parameters: buoyancy ratio (<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>N</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math altimg=\"urn:x-wiley:26884534:media:htj23224:htj23224-math-0001\" wiley:location=\"equation/htj23224-math-0001.png\" display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>) from −2 to 2, Darcy number (<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>Da</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math altimg=\"urn:x-wiley:26884534:media:htj23224:htj23224-math-0002\" wiley:location=\"equation/htj23224-math-0002.png\" display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi mathvariant=\"italic\"&gt;Da&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>) from 10<sup>−5</sup> to 10<sup>−2</sup>, Hartmann number (<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>Ha</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math altimg=\"urn:x-wiley:26884534:media:htj23224:htj23224-math-0003\" wiley:location=\"equation/htj23224-math-0003.png\" display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi mathvariant=\"italic\"&gt;Ha&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>) from 0 to 50, Rayleigh number (<i>Ra</i>) from 10<sup>3</sup> to 10<sup>6</sup>, and fusion temperature <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <msub>\n <mi>θ</mi>\n \n <mi>f</mi>\n </msub>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> &lt;math altimg=\"urn:x-wiley:26884534:media:htj23224:htj23224-math-0004\" wiley:location=\"equation/htj23224-math-0004.png\" display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;\\unicode{x003B8}&lt;/mi&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;/msub&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> from 0.05 to 0.9. The results demonstrate that increasing the <i>Ha</i> reduces heat transfer efficiency by up to 15%, as the magnetic field stabilizes fluid flow and enhances conduction. Conversely, increasing the <i>Ra</i> improves heat transfer efficiency by approximately 25% due to enhanced convection and mixing. The buoyancy ratio significantly influences fluid flow, with higher values favoring concentration-driven buoyancy, while lower values enhance temperature-driven convection. The <i>Da</i> affects permeability, with higher values promoting convective heat transfer and dynamic flow, whereas lower values result in stable, conductive heat transfer. Fusion temperature impacts phase change behavior, affecting heat capacity and flow dynamics through latent heat absorption. These insights underscore the critical role of optimizing these parameters to enhance performance in applications such as thermal energy storage and industrial processes involving phase change materials.</p>\n </div>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"54 2","pages":"1420-1433"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/htj.23224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study utilizes Artificial Neural Networks (ANNs) and Incompressible Smoothed Particle Hydrodynamics (ISPH) simulations to explore the effects of magnetic fields on heat and mass transfer in a porous spline half-cylinder filled with Nano-Encapsulated Phase Change Material (NEPCM). Simulations were conducted over a range of physical parameters: buoyancy ratio ( N <math altimg="urn:x-wiley:26884534:media:htj23224:htj23224-math-0001" wiley:location="equation/htj23224-math-0001.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>N</mi></mrow></mrow></math> ) from −2 to 2, Darcy number ( Da <math altimg="urn:x-wiley:26884534:media:htj23224:htj23224-math-0002" wiley:location="equation/htj23224-math-0002.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi mathvariant="italic">Da</mi></mrow></mrow></math> ) from 10−5 to 10−2, Hartmann number ( Ha <math altimg="urn:x-wiley:26884534:media:htj23224:htj23224-math-0003" wiley:location="equation/htj23224-math-0003.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi mathvariant="italic">Ha</mi></mrow></mrow></math> ) from 0 to 50, Rayleigh number (Ra) from 103 to 106, and fusion temperature ( θ f ) <math altimg="urn:x-wiley:26884534:media:htj23224:htj23224-math-0004" wiley:location="equation/htj23224-math-0004.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mrow><mo stretchy="false">(</mo><msub><mi>\unicode{x003B8}</mi><mi>f</mi></msub><mo stretchy="false">)</mo></mrow></mrow></mrow></math> from 0.05 to 0.9. The results demonstrate that increasing the Ha reduces heat transfer efficiency by up to 15%, as the magnetic field stabilizes fluid flow and enhances conduction. Conversely, increasing the Ra improves heat transfer efficiency by approximately 25% due to enhanced convection and mixing. The buoyancy ratio significantly influences fluid flow, with higher values favoring concentration-driven buoyancy, while lower values enhance temperature-driven convection. The Da affects permeability, with higher values promoting convective heat transfer and dynamic flow, whereas lower values result in stable, conductive heat transfer. Fusion temperature impacts phase change behavior, affecting heat capacity and flow dynamics through latent heat absorption. These insights underscore the critical role of optimizing these parameters to enhance performance in applications such as thermal energy storage and industrial processes involving phase change materials.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Heat Transfer
Heat Transfer THERMODYNAMICS-
CiteScore
6.30
自引率
19.40%
发文量
342
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信