Inkjet printing of mixed layers comprising multinary semiconductor quantum dots and charge transport materials for light-emitting diode displays

IF 1.7 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Genichi Motomura, Satoru Ohisa, Taro Uematsu, Susumu Kuwabata, Tatsuya Kameyama, Tsukasa Torimoto, Yoshihide Fujisaki
{"title":"Inkjet printing of mixed layers comprising multinary semiconductor quantum dots and charge transport materials for light-emitting diode displays","authors":"Genichi Motomura,&nbsp;Satoru Ohisa,&nbsp;Taro Uematsu,&nbsp;Susumu Kuwabata,&nbsp;Tatsuya Kameyama,&nbsp;Tsukasa Torimoto,&nbsp;Yoshihide Fujisaki","doi":"10.1002/jsid.2022","DOIUrl":null,"url":null,"abstract":"<p>Quantum dots (QDs) are important luminescent structures with applications in wide-color-gamut displays requiring exceptional color reproducibility. Multinary semiconductor QDs are expected to serve as eco-friendly materials to replace conventional QDs owing to the narrow spectral widths and tunable bandgaps of these QDs. However, the application of multinary QDs, which tend to exhibit defect-related emissions, to QD light-emitting diode (QLED) displays will require electroluminescence to be obtained from QLEDs incorporating inkjet-printed emitting layers. The present work examines QLEDs exhibiting vibrant color emissions based on blue-emitting Zn–Se–Te QDs, green-emitting Ag–In–Ga–S QDs, and red-emitting Ag–Cu–In–Ga–S QDs. Each such QLED contains QD emitting layers comprising a mixture of charge transport materials. The spectra obtained from these RGB QLEDs fabricated by spin-coating show very high color purity. Passive matrix QLED displays incorporating these QDs are also fabricated by inkjet printing to demonstrate the high color purity that can be obtained from multinary QDs in displays. In conjunction with passive matrix driving, these displays produce clear moving images with vibrant electroluminescence originating from the multinary QDs. The present results indicate that these QDs have significant potential for utilization in wide-color-gamut displays.</p>","PeriodicalId":49979,"journal":{"name":"Journal of the Society for Information Display","volume":"33 2","pages":"83-94"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Society for Information Display","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jsid.2022","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum dots (QDs) are important luminescent structures with applications in wide-color-gamut displays requiring exceptional color reproducibility. Multinary semiconductor QDs are expected to serve as eco-friendly materials to replace conventional QDs owing to the narrow spectral widths and tunable bandgaps of these QDs. However, the application of multinary QDs, which tend to exhibit defect-related emissions, to QD light-emitting diode (QLED) displays will require electroluminescence to be obtained from QLEDs incorporating inkjet-printed emitting layers. The present work examines QLEDs exhibiting vibrant color emissions based on blue-emitting Zn–Se–Te QDs, green-emitting Ag–In–Ga–S QDs, and red-emitting Ag–Cu–In–Ga–S QDs. Each such QLED contains QD emitting layers comprising a mixture of charge transport materials. The spectra obtained from these RGB QLEDs fabricated by spin-coating show very high color purity. Passive matrix QLED displays incorporating these QDs are also fabricated by inkjet printing to demonstrate the high color purity that can be obtained from multinary QDs in displays. In conjunction with passive matrix driving, these displays produce clear moving images with vibrant electroluminescence originating from the multinary QDs. The present results indicate that these QDs have significant potential for utilization in wide-color-gamut displays.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of the Society for Information Display
Journal of the Society for Information Display 工程技术-材料科学:综合
CiteScore
4.80
自引率
8.70%
发文量
98
审稿时长
3 months
期刊介绍: The Journal of the Society for Information Display publishes original works dealing with the theory and practice of information display. Coverage includes materials, devices and systems; the underlying chemistry, physics, physiology and psychology; measurement techniques, manufacturing technologies; and all aspects of the interaction between equipment and its users. Review articles are also published in all of these areas. Occasional special issues or sections consist of collections of papers on specific topical areas or collections of full length papers based in part on oral or poster presentations given at SID sponsored conferences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信