Electrochemical Detection of Free Chlorine in Ballast Water Management System

Pil Ju Park, Won Jin Jang, Dong Jun Lee, Tae Jung Park, Soo Young Kim
{"title":"Electrochemical Detection of Free Chlorine in Ballast Water Management System","authors":"Pil Ju Park,&nbsp;Won Jin Jang,&nbsp;Dong Jun Lee,&nbsp;Tae Jung Park,&nbsp;Soo Young Kim","doi":"10.1002/adsr.202400135","DOIUrl":null,"url":null,"abstract":"<p>Ballast water, which is seawater taken onboard ships to ensure stable and maneuverable sailing, can pose a significant threat to marine ecosystems and human health when discharged owing to the presence of undesirable organisms. To mitigate this risk, ballast water treatment methods such as electrochlorination are employed, where oxidants such as hypochlorite are generated to effectively eliminate marine microorganisms. The effectiveness of an electrochlorination-based ballast water management system (BWMS) depends on the maintenance of optimal concentrations of total residual chlorine (TRC). However, excessive levels of free chlorine (Cl) can result in corrosion and environmental damage, rendering the accurate monitoring of TRC levels crucial for the safe discharge of ballast water. This review focuses on recent advancements in electrochemical sensors for free Cl measurement in BWMS. The process of free Cl generation, techniques for electrochemical detection, and factors influencing sensor performance are elucidated. In addition, materials and strategies for improving the performance of the sensors are described. Finally, perspectives on the current issues and future challenges that must be overcome to effectively utilize electrochemical detection in BWMS are discussed, thereby offering new directions for advancing this technology.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"4 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400135","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sensor Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsr.202400135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ballast water, which is seawater taken onboard ships to ensure stable and maneuverable sailing, can pose a significant threat to marine ecosystems and human health when discharged owing to the presence of undesirable organisms. To mitigate this risk, ballast water treatment methods such as electrochlorination are employed, where oxidants such as hypochlorite are generated to effectively eliminate marine microorganisms. The effectiveness of an electrochlorination-based ballast water management system (BWMS) depends on the maintenance of optimal concentrations of total residual chlorine (TRC). However, excessive levels of free chlorine (Cl) can result in corrosion and environmental damage, rendering the accurate monitoring of TRC levels crucial for the safe discharge of ballast water. This review focuses on recent advancements in electrochemical sensors for free Cl measurement in BWMS. The process of free Cl generation, techniques for electrochemical detection, and factors influencing sensor performance are elucidated. In addition, materials and strategies for improving the performance of the sensors are described. Finally, perspectives on the current issues and future challenges that must be overcome to effectively utilize electrochemical detection in BWMS are discussed, thereby offering new directions for advancing this technology.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信