Enhancing the Performance of Split Unit Air-Conditioning System by Integrating Air–PCM Heat Transfer Unit: Numerical and Experimental Assessment

IF 2.8 Q2 THERMODYNAMICS
Heat Transfer Pub Date : 2024-11-18 DOI:10.1002/htj.23232
Noor A. Hussein, Amar S. Abdul-Zahra, Ayad M. Al Jubori
{"title":"Enhancing the Performance of Split Unit Air-Conditioning System by Integrating Air–PCM Heat Transfer Unit: Numerical and Experimental Assessment","authors":"Noor A. Hussein,&nbsp;Amar S. Abdul-Zahra,&nbsp;Ayad M. Al Jubori","doi":"10.1002/htj.23232","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The growing need for energy-efficient cooling solutions has driven the exploration of cutting-edge technologies in air-conditioning (AC) systems. Therefore, this research aims to improve the energy efficiency of a split AC system by incorporating a phase change material (PCM) heat transfer element into the AC system. PCM can release and store thermal energy, assisting in decreasing the load on the AC system during peak cooling periods. The PCM utilized in the study is Rubitherm RT18HC. The study includes numerical and experimental evaluations to assess the impact of the air–PCM unit on the split unit's performance. The numerical simulations were conducted using computational fluid dynamics models based on ANSYS-Fluent to choose the best design and conditions for the air–PCM unit. The experimental study was conducted in the hot environment of Iraq, where outdoor temperatures exceed 43°C. The numerical results showed that the best design and conditions concluded to be a 1-cm PCM height in the panels, 3 cm air channel height, 0.9 m/s air velocity for charging, 0.45 m/s air velocity for discharging, 7°C inlet air temperature for charging, and 25°C inlet air temperature for discharging. In the experimental part, after validating the theoretical results, two practical cases were conducted to evaluate the split unit performance with and without PCM. The results showed an average of 5% lower room temperature, 9.5% lower air entering the evaporator temperature, 10% lower energy consumption, and a 12.5% increase in the AC unit's coefficient of performance when using the air–PCM heat transfer unit.</p>\n </div>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"54 2","pages":"1434-1447"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/htj.23232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

The growing need for energy-efficient cooling solutions has driven the exploration of cutting-edge technologies in air-conditioning (AC) systems. Therefore, this research aims to improve the energy efficiency of a split AC system by incorporating a phase change material (PCM) heat transfer element into the AC system. PCM can release and store thermal energy, assisting in decreasing the load on the AC system during peak cooling periods. The PCM utilized in the study is Rubitherm RT18HC. The study includes numerical and experimental evaluations to assess the impact of the air–PCM unit on the split unit's performance. The numerical simulations were conducted using computational fluid dynamics models based on ANSYS-Fluent to choose the best design and conditions for the air–PCM unit. The experimental study was conducted in the hot environment of Iraq, where outdoor temperatures exceed 43°C. The numerical results showed that the best design and conditions concluded to be a 1-cm PCM height in the panels, 3 cm air channel height, 0.9 m/s air velocity for charging, 0.45 m/s air velocity for discharging, 7°C inlet air temperature for charging, and 25°C inlet air temperature for discharging. In the experimental part, after validating the theoretical results, two practical cases were conducted to evaluate the split unit performance with and without PCM. The results showed an average of 5% lower room temperature, 9.5% lower air entering the evaporator temperature, 10% lower energy consumption, and a 12.5% increase in the AC unit's coefficient of performance when using the air–PCM heat transfer unit.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Heat Transfer
Heat Transfer THERMODYNAMICS-
CiteScore
6.30
自引率
19.40%
发文量
342
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信