Incorporating Climatic Extremes Using the GEV Distribution Improves SDM Range Edge Performance

IF 3.4 2区 环境科学与生态学 Q2 ECOLOGY
Ward Fonteyn, Josep M. Serra-Diaz, Bart Muys, Koenraad Van Meerbeek
{"title":"Incorporating Climatic Extremes Using the GEV Distribution Improves SDM Range Edge Performance","authors":"Ward Fonteyn,&nbsp;Josep M. Serra-Diaz,&nbsp;Bart Muys,&nbsp;Koenraad Van Meerbeek","doi":"10.1111/jbi.15067","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aim</h3>\n \n <p>The changing frequency and intensity of climatic extremes due to climate change can have sudden and adverse impacts on the distribution of species. While species distribution modelling is a vital tool in ecological applications, current approaches fail to fully capture the distribution of climatic extremes, particularly of rare events with the most disruptive potential. Especially at the edges of species' ranges, where conditions are already less favourable, predictions might be inaccurate when these extremes are not well represented.</p>\n </section>\n \n <section>\n \n <h3> Location</h3>\n \n <p>Europe.</p>\n </section>\n \n <section>\n \n <h3> Taxon</h3>\n \n <p>Tree species.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We present a novel approach to integrate extreme events into species distribution models based on the generalised extreme value (GEV) distribution. This distribution, following from the extreme value theory has been established as a valuable tool in analysing climatic extremes, both in an ecological context and beyond. The approach relying on the GEV distribution is broadly applicable, readily transferable across species and relies on widely available data. We demonstrate the efficacy of our approach for 28 European tree species, illustrating its superior ability to fully capture the distribution of climatic extremes compared to state-of-the-art methods.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>We found that incorporating parameters on climatic extremes derived from the GEV distribution increased model performance (AIC<sub>model</sub>) and characterised range edges more accurately (AUC<sub>edge</sub>) compared to competing approaches. However, general AUC values were only marginally increased across the species and study period analysed. Overall, the GEV model predicted a narrower niche for the species included in this study.</p>\n </section>\n \n <section>\n \n <h3> Main Conclusions</h3>\n \n <p>Incorporating climatic extremes can impact spatial predictions of species distribution models, especially at range margins. We found that using the GEV distribution to characterise extreme variables in SDMs yields the best performance at these distribution edges. Given the importance of range edges for species conservation, a detailed inclusion of extremes in SDMs employed for those applications will help ensure robust conclusions.</p>\n </section>\n </div>","PeriodicalId":15299,"journal":{"name":"Journal of Biogeography","volume":"52 3","pages":"780-791"},"PeriodicalIF":3.4000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biogeography","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jbi.15067","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aim

The changing frequency and intensity of climatic extremes due to climate change can have sudden and adverse impacts on the distribution of species. While species distribution modelling is a vital tool in ecological applications, current approaches fail to fully capture the distribution of climatic extremes, particularly of rare events with the most disruptive potential. Especially at the edges of species' ranges, where conditions are already less favourable, predictions might be inaccurate when these extremes are not well represented.

Location

Europe.

Taxon

Tree species.

Methods

We present a novel approach to integrate extreme events into species distribution models based on the generalised extreme value (GEV) distribution. This distribution, following from the extreme value theory has been established as a valuable tool in analysing climatic extremes, both in an ecological context and beyond. The approach relying on the GEV distribution is broadly applicable, readily transferable across species and relies on widely available data. We demonstrate the efficacy of our approach for 28 European tree species, illustrating its superior ability to fully capture the distribution of climatic extremes compared to state-of-the-art methods.

Results

We found that incorporating parameters on climatic extremes derived from the GEV distribution increased model performance (AICmodel) and characterised range edges more accurately (AUCedge) compared to competing approaches. However, general AUC values were only marginally increased across the species and study period analysed. Overall, the GEV model predicted a narrower niche for the species included in this study.

Main Conclusions

Incorporating climatic extremes can impact spatial predictions of species distribution models, especially at range margins. We found that using the GEV distribution to characterise extreme variables in SDMs yields the best performance at these distribution edges. Given the importance of range edges for species conservation, a detailed inclusion of extremes in SDMs employed for those applications will help ensure robust conclusions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biogeography
Journal of Biogeography 环境科学-生态学
CiteScore
7.70
自引率
5.10%
发文量
203
审稿时长
2.2 months
期刊介绍: Papers dealing with all aspects of spatial, ecological and historical biogeography are considered for publication in Journal of Biogeography. The mission of the journal is to contribute to the growth and societal relevance of the discipline of biogeography through its role in the dissemination of biogeographical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信