A New Multi-Objective Binary Bat Algorithm for Feature Selection in Intrusion Detection Systems

IF 1.5 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Mohamed Amine Laamari, Nadjet Kamel
{"title":"A New Multi-Objective Binary Bat Algorithm for Feature Selection in Intrusion Detection Systems","authors":"Mohamed Amine Laamari,&nbsp;Nadjet Kamel","doi":"10.1002/cpe.70000","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Monitoring network traffic and detecting security threats is a vital task in today's world, and intrusion detection systems (IDS) have become an essential tool for this purpose. However, IDSs have to analyze large volumes of data, which often contain irrelevant and redundant features. This makes the job of IDSs more challenging, as they must sift through all available features to identify attack patterns, leading to longer processing time and reduced detection accuracy. To address this, we propose a new wrapper approach for solving the feature selection (FS) problem. Our proposed approach uses a novel multi-objective binary bat algorithm (MBBA-FS) with a decision tree classifier. The MBBA-FS aims to produce a set of non-dominated solutions that minimize the number of features used while maintaining a high detection accuracy. Then, we use a frequency ranking method to identify a single subset of relevant features from the resulting set of non-dominated solutions. We tested the feasibility and performance of our approach against other leading FS methods using various datasets, including KDD CUP 1999, NLS-KDD, UNSW-NB15, and several synthetic benchmarks. The experimental results show that MBBA-FS outperforms existing FS approaches in terms of classification accuracy and number of selected features.</p>\n </div>","PeriodicalId":55214,"journal":{"name":"Concurrency and Computation-Practice & Experience","volume":"37 4-5","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrency and Computation-Practice & Experience","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpe.70000","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Monitoring network traffic and detecting security threats is a vital task in today's world, and intrusion detection systems (IDS) have become an essential tool for this purpose. However, IDSs have to analyze large volumes of data, which often contain irrelevant and redundant features. This makes the job of IDSs more challenging, as they must sift through all available features to identify attack patterns, leading to longer processing time and reduced detection accuracy. To address this, we propose a new wrapper approach for solving the feature selection (FS) problem. Our proposed approach uses a novel multi-objective binary bat algorithm (MBBA-FS) with a decision tree classifier. The MBBA-FS aims to produce a set of non-dominated solutions that minimize the number of features used while maintaining a high detection accuracy. Then, we use a frequency ranking method to identify a single subset of relevant features from the resulting set of non-dominated solutions. We tested the feasibility and performance of our approach against other leading FS methods using various datasets, including KDD CUP 1999, NLS-KDD, UNSW-NB15, and several synthetic benchmarks. The experimental results show that MBBA-FS outperforms existing FS approaches in terms of classification accuracy and number of selected features.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Concurrency and Computation-Practice & Experience
Concurrency and Computation-Practice & Experience 工程技术-计算机:理论方法
CiteScore
5.00
自引率
10.00%
发文量
664
审稿时长
9.6 months
期刊介绍: Concurrency and Computation: Practice and Experience (CCPE) publishes high-quality, original research papers, and authoritative research review papers, in the overlapping fields of: Parallel and distributed computing; High-performance computing; Computational and data science; Artificial intelligence and machine learning; Big data applications, algorithms, and systems; Network science; Ontologies and semantics; Security and privacy; Cloud/edge/fog computing; Green computing; and Quantum computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信