Numerical Study on the Effect of Trapezoidal-Wave Shaped Partition on Natural Convection Flow Within a Porous Enclosure

IF 2.8 Q2 THERMODYNAMICS
Heat Transfer Pub Date : 2024-12-16 DOI:10.1002/htj.23247
Jayesh Chordiya, Padmakar Deshmukh, Ram V. Sharma
{"title":"Numerical Study on the Effect of Trapezoidal-Wave Shaped Partition on Natural Convection Flow Within a Porous Enclosure","authors":"Jayesh Chordiya,&nbsp;Padmakar Deshmukh,&nbsp;Ram V. Sharma","doi":"10.1002/htj.23247","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The use of a trapezoidal-wave shaped diathermal partition to reduce natural convection flow and heat transfer within a fluid-saturated, differentially heated porous enclosure is investigated in this study. This work is motivated by the need to control and reduce convective heat transfer in differentially heated porous enclosures, impacting applications like energy-efficient building materials, thermal insulation, and improved heat exchangers. The study aims to disrupt convection currents and minimize thermal transfer. The Darcy flow model, representing fluid flow in porous media, is applied here and solved using the successive accelerated replacement (SAR) scheme with a finite difference method. Key parameters are varied to explore their effects on thermal and flow patterns. These parameters include the partition's length (with values between <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>0.02</mn>\n \n <mo>≤</mo>\n \n <mi>Z</mi>\n \n <mo>≤</mo>\n \n <mn>0.1</mn>\n </mrow>\n </mrow>\n <annotation> &lt;math altimg=\"urn:x-wiley:26884534:media:htj23247:htj23247-math-0001\" wiley:location=\"equation/htj23247-math-0001.png\" display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mn&gt;0.02&lt;/mn&gt;&lt;mo&gt;\\unicode{x02264}&lt;/mo&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;mo&gt;\\unicode{x02264}&lt;/mo&gt;&lt;mn&gt;0.1&lt;/mn&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>), height (spanning from <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>0</mn>\n \n <mo>≤</mo>\n \n <mi>H</mi>\n \n <mo>≤</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n <annotation> &lt;math altimg=\"urn:x-wiley:26884534:media:htj23247:htj23247-math-0002\" wiley:location=\"equation/htj23247-math-0002.png\" display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;\\unicode{x02264}&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;\\unicode{x02264}&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>), and distance from the left wall of the enclosure (<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>0.25</mn>\n \n <mo>≤</mo>\n \n <mi>D</mi>\n \n <mo>≤</mo>\n \n <mn>0.75</mn>\n </mrow>\n </mrow>\n <annotation> &lt;math altimg=\"urn:x-wiley:26884534:media:htj23247:htj23247-math-0003\" wiley:location=\"equation/htj23247-math-0003.png\" display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mn&gt;0.25&lt;/mn&gt;&lt;mo&gt;\\unicode{x02264}&lt;/mo&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;mo&gt;\\unicode{x02264}&lt;/mo&gt;&lt;mn&gt;0.75&lt;/mn&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>), along with the modified Rayleigh number, which ranges from <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>100</mn>\n \n <mo>≤</mo>\n \n <mi>R</mi>\n \n <mi>a</mi>\n \n <mo>≤</mo>\n \n <mn>2000</mn>\n </mrow>\n </mrow>\n <annotation> &lt;math altimg=\"urn:x-wiley:26884534:media:htj23247:htj23247-math-0004\" wiley:location=\"equation/htj23247-math-0004.png\" display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mn&gt;100&lt;/mn&gt;&lt;mo&gt;\\unicode{x02264}&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;\\unicode{x02264}&lt;/mo&gt;&lt;mn&gt;2000&lt;/mn&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>. Through computational visualization of streamlines and isotherms, this study examines how changes in partition geometry influence flow deviations. Results indicate that the trapezoidal partition allows flexibility in adjusting its geometrical parameters, effectively reducing convection flow strength without significant compromise. A drop of 41.13% in flow strength and about 56% reducted in heat transfer is achieved for trapezoidal partition with smaller edge length These findings suggest that such a partition setup can significantly improve thermal management in systems where fluid-saturated porous enclosures are subject to differential heating.</p>\n </div>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"54 2","pages":"1733-1749"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/htj.23247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

The use of a trapezoidal-wave shaped diathermal partition to reduce natural convection flow and heat transfer within a fluid-saturated, differentially heated porous enclosure is investigated in this study. This work is motivated by the need to control and reduce convective heat transfer in differentially heated porous enclosures, impacting applications like energy-efficient building materials, thermal insulation, and improved heat exchangers. The study aims to disrupt convection currents and minimize thermal transfer. The Darcy flow model, representing fluid flow in porous media, is applied here and solved using the successive accelerated replacement (SAR) scheme with a finite difference method. Key parameters are varied to explore their effects on thermal and flow patterns. These parameters include the partition's length (with values between 0.02 Z 0.1 <math altimg="urn:x-wiley:26884534:media:htj23247:htj23247-math-0001" wiley:location="equation/htj23247-math-0001.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mn>0.02</mn><mo>\unicode{x02264}</mo><mi>Z</mi><mo>\unicode{x02264}</mo><mn>0.1</mn></mrow></mrow></math> ), height (spanning from 0 H 1 <math altimg="urn:x-wiley:26884534:media:htj23247:htj23247-math-0002" wiley:location="equation/htj23247-math-0002.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mn>0</mn><mo>\unicode{x02264}</mo><mi>H</mi><mo>\unicode{x02264}</mo><mn>1</mn></mrow></mrow></math> ), and distance from the left wall of the enclosure ( 0.25 D 0.75 <math altimg="urn:x-wiley:26884534:media:htj23247:htj23247-math-0003" wiley:location="equation/htj23247-math-0003.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mn>0.25</mn><mo>\unicode{x02264}</mo><mi>D</mi><mo>\unicode{x02264}</mo><mn>0.75</mn></mrow></mrow></math> ), along with the modified Rayleigh number, which ranges from 100 R a 2000 <math altimg="urn:x-wiley:26884534:media:htj23247:htj23247-math-0004" wiley:location="equation/htj23247-math-0004.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mn>100</mn><mo>\unicode{x02264}</mo><mi>R</mi><mi>a</mi><mo>\unicode{x02264}</mo><mn>2000</mn></mrow></mrow></math> . Through computational visualization of streamlines and isotherms, this study examines how changes in partition geometry influence flow deviations. Results indicate that the trapezoidal partition allows flexibility in adjusting its geometrical parameters, effectively reducing convection flow strength without significant compromise. A drop of 41.13% in flow strength and about 56% reducted in heat transfer is achieved for trapezoidal partition with smaller edge length These findings suggest that such a partition setup can significantly improve thermal management in systems where fluid-saturated porous enclosures are subject to differential heating.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Heat Transfer
Heat Transfer THERMODYNAMICS-
CiteScore
6.30
自引率
19.40%
发文量
342
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信