Numerical Study on the Effect of Trapezoidal-Wave Shaped Partition on Natural Convection Flow Within a Porous Enclosure

IF 2.8 Q2 THERMODYNAMICS
Heat Transfer Pub Date : 2024-12-16 DOI:10.1002/htj.23247
Jayesh Chordiya, Padmakar Deshmukh, Ram V. Sharma
{"title":"Numerical Study on the Effect of Trapezoidal-Wave Shaped Partition on Natural Convection Flow Within a Porous Enclosure","authors":"Jayesh Chordiya,&nbsp;Padmakar Deshmukh,&nbsp;Ram V. Sharma","doi":"10.1002/htj.23247","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The use of a trapezoidal-wave shaped diathermal partition to reduce natural convection flow and heat transfer within a fluid-saturated, differentially heated porous enclosure is investigated in this study. This work is motivated by the need to control and reduce convective heat transfer in differentially heated porous enclosures, impacting applications like energy-efficient building materials, thermal insulation, and improved heat exchangers. The study aims to disrupt convection currents and minimize thermal transfer. The Darcy flow model, representing fluid flow in porous media, is applied here and solved using the successive accelerated replacement (SAR) scheme with a finite difference method. Key parameters are varied to explore their effects on thermal and flow patterns. These parameters include the partition's length (with values between <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>0.02</mn>\n \n <mo>≤</mo>\n \n <mi>Z</mi>\n \n <mo>≤</mo>\n \n <mn>0.1</mn>\n </mrow>\n </mrow>\n <annotation> &lt;math altimg=\"urn:x-wiley:26884534:media:htj23247:htj23247-math-0001\" wiley:location=\"equation/htj23247-math-0001.png\" display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mn&gt;0.02&lt;/mn&gt;&lt;mo&gt;\\unicode{x02264}&lt;/mo&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;mo&gt;\\unicode{x02264}&lt;/mo&gt;&lt;mn&gt;0.1&lt;/mn&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>), height (spanning from <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>0</mn>\n \n <mo>≤</mo>\n \n <mi>H</mi>\n \n <mo>≤</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n <annotation> &lt;math altimg=\"urn:x-wiley:26884534:media:htj23247:htj23247-math-0002\" wiley:location=\"equation/htj23247-math-0002.png\" display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;\\unicode{x02264}&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;\\unicode{x02264}&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>), and distance from the left wall of the enclosure (<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>0.25</mn>\n \n <mo>≤</mo>\n \n <mi>D</mi>\n \n <mo>≤</mo>\n \n <mn>0.75</mn>\n </mrow>\n </mrow>\n <annotation> &lt;math altimg=\"urn:x-wiley:26884534:media:htj23247:htj23247-math-0003\" wiley:location=\"equation/htj23247-math-0003.png\" display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mn&gt;0.25&lt;/mn&gt;&lt;mo&gt;\\unicode{x02264}&lt;/mo&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;mo&gt;\\unicode{x02264}&lt;/mo&gt;&lt;mn&gt;0.75&lt;/mn&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>), along with the modified Rayleigh number, which ranges from <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>100</mn>\n \n <mo>≤</mo>\n \n <mi>R</mi>\n \n <mi>a</mi>\n \n <mo>≤</mo>\n \n <mn>2000</mn>\n </mrow>\n </mrow>\n <annotation> &lt;math altimg=\"urn:x-wiley:26884534:media:htj23247:htj23247-math-0004\" wiley:location=\"equation/htj23247-math-0004.png\" display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mn&gt;100&lt;/mn&gt;&lt;mo&gt;\\unicode{x02264}&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;\\unicode{x02264}&lt;/mo&gt;&lt;mn&gt;2000&lt;/mn&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>. Through computational visualization of streamlines and isotherms, this study examines how changes in partition geometry influence flow deviations. Results indicate that the trapezoidal partition allows flexibility in adjusting its geometrical parameters, effectively reducing convection flow strength without significant compromise. A drop of 41.13% in flow strength and about 56% reducted in heat transfer is achieved for trapezoidal partition with smaller edge length These findings suggest that such a partition setup can significantly improve thermal management in systems where fluid-saturated porous enclosures are subject to differential heating.</p>\n </div>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"54 2","pages":"1733-1749"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/htj.23247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

The use of a trapezoidal-wave shaped diathermal partition to reduce natural convection flow and heat transfer within a fluid-saturated, differentially heated porous enclosure is investigated in this study. This work is motivated by the need to control and reduce convective heat transfer in differentially heated porous enclosures, impacting applications like energy-efficient building materials, thermal insulation, and improved heat exchangers. The study aims to disrupt convection currents and minimize thermal transfer. The Darcy flow model, representing fluid flow in porous media, is applied here and solved using the successive accelerated replacement (SAR) scheme with a finite difference method. Key parameters are varied to explore their effects on thermal and flow patterns. These parameters include the partition's length (with values between 0.02 Z 0.1 <math altimg="urn:x-wiley:26884534:media:htj23247:htj23247-math-0001" wiley:location="equation/htj23247-math-0001.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mn>0.02</mn><mo>\unicode{x02264}</mo><mi>Z</mi><mo>\unicode{x02264}</mo><mn>0.1</mn></mrow></mrow></math> ), height (spanning from 0 H 1 <math altimg="urn:x-wiley:26884534:media:htj23247:htj23247-math-0002" wiley:location="equation/htj23247-math-0002.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mn>0</mn><mo>\unicode{x02264}</mo><mi>H</mi><mo>\unicode{x02264}</mo><mn>1</mn></mrow></mrow></math> ), and distance from the left wall of the enclosure ( 0.25 D 0.75 <math altimg="urn:x-wiley:26884534:media:htj23247:htj23247-math-0003" wiley:location="equation/htj23247-math-0003.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mn>0.25</mn><mo>\unicode{x02264}</mo><mi>D</mi><mo>\unicode{x02264}</mo><mn>0.75</mn></mrow></mrow></math> ), along with the modified Rayleigh number, which ranges from 100 R a 2000 <math altimg="urn:x-wiley:26884534:media:htj23247:htj23247-math-0004" wiley:location="equation/htj23247-math-0004.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mn>100</mn><mo>\unicode{x02264}</mo><mi>R</mi><mi>a</mi><mo>\unicode{x02264}</mo><mn>2000</mn></mrow></mrow></math> . Through computational visualization of streamlines and isotherms, this study examines how changes in partition geometry influence flow deviations. Results indicate that the trapezoidal partition allows flexibility in adjusting its geometrical parameters, effectively reducing convection flow strength without significant compromise. A drop of 41.13% in flow strength and about 56% reducted in heat transfer is achieved for trapezoidal partition with smaller edge length These findings suggest that such a partition setup can significantly improve thermal management in systems where fluid-saturated porous enclosures are subject to differential heating.

多孔围护结构中梯形波隔板对自然对流影响的数值研究
在本研究中,研究了在流体饱和、差热多孔外壳中使用梯形波非热隔板来减少自然对流流动和传热。这项工作的动机是需要控制和减少差热多孔外壳中的对流传热,影响节能建筑材料,隔热和改进的热交换器等应用。这项研究的目的是破坏对流,减少热传递。本文采用代表多孔介质中流体流动的达西流动模型,采用有限差分法逐次加速替换(SAR)格式求解。关键参数的变化,以探讨其对热和流动模式的影响。这些参数包括分区的长度(值在0.02≤Z≤0.1之间)<math altimg=“urn:x-wiley:26884534:media:htj23247:htj23247-math-0001”威利:位置= "方程/ htj23247 -数学- 0001. png”=“内联”xmlns = " http://www.w3.org/1998/Math/MathML "显示祝辞& lt; mrow> & lt; mrow> & lt; mn> 0.02 & lt; / mn> & lt; mo> \ unicode {x02264} & lt; / mo> & lt; mi> Z< / mi> & lt; mo> \ unicode {x02264} & lt; / mo> & lt; mn> 0.1 & lt; / mn> & lt; / mrow> & lt; / mrow> & lt; / math> ; ),height(从0≤H≤1开始)<math altimg="urn:x-wiley:26884534; media:htj23247:htj23247-math-0002" wiley:location="equation/htj23247-math-0002.png" display=“inline”xmlns = " http://www.w3.org/1998/Math/MathML "祝辞& lt; mrow> & lt; mrow> & lt; mn> 0 & lt; / mn> & lt; mo> \ unicode {x02264} & lt; / mo> & lt; mi> H< / mi> & lt; mo> \ unicode {x02264} & lt; / mo> & lt; mn> 1 & lt; / mn> & lt; / mrow> & lt; / mrow> & lt; / math> ; ),和距离框左壁的距离(0.25≤D≤0.75 <math altimg="urn:x-wiley:26884534; media:htj23247:htj23247-math-0003" wiley:location="equation/htj23247-math-0003.png" display=“inline”xmlns = " http://www.w3.org/1998/Math/MathML "祝辞& lt; mrow> & lt; mrow> & lt; mn> 0.25 & lt; / mn> & lt; mo> \ unicode {x02264} & lt; / mo> & lt; mi> D< / mi> & lt; mo> \ unicode {x02264} & lt; / mo> & lt; mn> 0.75 & lt; / mn> & lt; / mrow> & lt; / mrow> & lt; / math> ; ),以及修改后的瑞利数,范围从100≤R a≤2000 <;math altimg="urn:x-wiley:26884534; media:htj23247:htj23247-math-0004" wiley:location=“equation/htj23247-math-0004.png”显示=“内联”xmlns = " http://www.w3.org/1998/Math/MathML "祝辞& lt; mrow> & lt; mrow> & lt; mn> 100 & lt; / mn> & lt; mo> \ unicode {x02264} & lt; / mo> & lt; mi> R< / mi> & lt; mi> a< / mi> & lt; mo> \ unicode {x02264} & lt; / mo> & lt; mn> 2000 & lt; / mn> & lt; / mrow> & lt; / mrow> & lt; / math>. 通过流线和等温线的计算可视化,本研究考察了分区几何形状的变化如何影响流动偏差。结果表明,梯形隔板可以灵活地调整其几何参数,在不显著妥协的情况下有效地降低对流流动强度。对于边长较小的梯形隔板,流动强度下降41.13%,换热减少56%。这些研究结果表明,这种隔板设置可以显著改善流体饱和多孔外壳受差热影响的系统的热管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Heat Transfer
Heat Transfer THERMODYNAMICS-
CiteScore
6.30
自引率
19.40%
发文量
342
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信