Impact of Dual Phase Lag on Natural Convection Flow in a Porous Vertical Channel in the Presence of Periodic Boundary

IF 2.8 Q2 THERMODYNAMICS
Heat Transfer Pub Date : 2024-12-03 DOI:10.1002/htj.23239
N. L. Mukhtar, H. M. Jibril
{"title":"Impact of Dual Phase Lag on Natural Convection Flow in a Porous Vertical Channel in the Presence of Periodic Boundary","authors":"N. L. Mukhtar,&nbsp;H. M. Jibril","doi":"10.1002/htj.23239","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The dual-phase-lag (DPL) heat conduction model is utilized in this research to analyze the fluid flow of viscous fluid passing through a porous vertical channel with periodic boundary conditions. Periodic heating is subjected to the channel boundary. Equations regarding the model, including the momentum and energy equations, in which the DPL term is incorporated, all in dimensional form, are stated and are being transformed to their dimensionless form, then solved analytically by undetermined coefficients and variation of parameters. The actual expressions of temperature and velocity, as well as the heat transfer rate and skin friction, are determined. The effects of the DPL parameters, suction/injection, Prandtl number, heat source/sink, and Strouhal number on the dimensionless temperature and velocity profiles are demonstrated using graphs that are constructed with the aid of MATLAB. It was found during the investigation that the introduction of the DPL model, together with suction/injection in the channel, enhances the velocity and fluid temperature within the channel. Also, the decreasing effect of temperature gradient phase lag on fluid temperature and velocity conversed with that of heat flux phase lag. As an important contribution, the discovery of the effects of the phase-lag parameters of the DPL model and suction/injection on fluid temperature and velocity would significantly help researchers advance the design of electrical and electronic systems.</p>\n </div>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"54 2","pages":"1623-1637"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/htj.23239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

The dual-phase-lag (DPL) heat conduction model is utilized in this research to analyze the fluid flow of viscous fluid passing through a porous vertical channel with periodic boundary conditions. Periodic heating is subjected to the channel boundary. Equations regarding the model, including the momentum and energy equations, in which the DPL term is incorporated, all in dimensional form, are stated and are being transformed to their dimensionless form, then solved analytically by undetermined coefficients and variation of parameters. The actual expressions of temperature and velocity, as well as the heat transfer rate and skin friction, are determined. The effects of the DPL parameters, suction/injection, Prandtl number, heat source/sink, and Strouhal number on the dimensionless temperature and velocity profiles are demonstrated using graphs that are constructed with the aid of MATLAB. It was found during the investigation that the introduction of the DPL model, together with suction/injection in the channel, enhances the velocity and fluid temperature within the channel. Also, the decreasing effect of temperature gradient phase lag on fluid temperature and velocity conversed with that of heat flux phase lag. As an important contribution, the discovery of the effects of the phase-lag parameters of the DPL model and suction/injection on fluid temperature and velocity would significantly help researchers advance the design of electrical and electronic systems.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Heat Transfer
Heat Transfer THERMODYNAMICS-
CiteScore
6.30
自引率
19.40%
发文量
342
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信