Single Cell RNA-Seq Identifies Cell Subpopulations Contributing to Idiopathic Pulmonary Fibrosis in Humans

IF 5.3
Tangjuan Zhang, Zhichao Hou, Zheng Ding, Peng Wang, Xue Pan, Xiangnan Li
{"title":"Single Cell RNA-Seq Identifies Cell Subpopulations Contributing to Idiopathic Pulmonary Fibrosis in Humans","authors":"Tangjuan Zhang,&nbsp;Zhichao Hou,&nbsp;Zheng Ding,&nbsp;Peng Wang,&nbsp;Xue Pan,&nbsp;Xiangnan Li","doi":"10.1111/jcmm.70402","DOIUrl":null,"url":null,"abstract":"<p>The cell populations, particularly subpopulations, involved in the onset and progression of idiopathic pulmonary fibrosis (IPF) remain incompletely understood. This study employed single-cell RNA-seq to identify cell populations and subpopulations with significantly altered proportions in the lungs of patients with IPF. In IPF lungs, endothelial cell proportions were significantly increased, while alveolar epithelial cell proportions were markedly decreased. Among the three identified fibroblast subpopulations, the proportion of myofibroblasts was significantly increased, while the proportions of the other two fibroblast subtypes were reduced. Similarly, within the three macrophage subpopulations, the macrophage_SPP1 subpopulation, localised to fibroblastic foci, showed a significant increase in proportion, while the alveolar macrophage subpopulation was significantly reduced. Trajectory analysis revealed that fibroblasts in IPF lungs could differentiate into myofibroblasts, and alveolar macrophages could transition into the macrophage_SPP1 subpopulation. Among T-cell subpopulations, only the CD4 T_FOXP3 subpopulation exhibited a significant change, whereas all four B-cell subpopulations showed significant proportional shifts. These findings provide a comprehensive view of the cellular alterations contributing to IPF pathogenesis. Extensive interactions among various cell populations and subpopulations were identified. The proportions of various cell populations and subpopulations in IPF lungs, including endothelial cells, fibroblasts, macrophages and B cells, were significantly altered. Further in-depth investigation into the roles of cell subpopulations with significantly altered proportions in the onset and progression of IPF will provide valuable insights into the pathological mechanisms underlying the disease. This understanding could facilitate the development of novel therapeutic strategies and medications for IPF treatment.</p>","PeriodicalId":101321,"journal":{"name":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","volume":"29 3","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.70402","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The cell populations, particularly subpopulations, involved in the onset and progression of idiopathic pulmonary fibrosis (IPF) remain incompletely understood. This study employed single-cell RNA-seq to identify cell populations and subpopulations with significantly altered proportions in the lungs of patients with IPF. In IPF lungs, endothelial cell proportions were significantly increased, while alveolar epithelial cell proportions were markedly decreased. Among the three identified fibroblast subpopulations, the proportion of myofibroblasts was significantly increased, while the proportions of the other two fibroblast subtypes were reduced. Similarly, within the three macrophage subpopulations, the macrophage_SPP1 subpopulation, localised to fibroblastic foci, showed a significant increase in proportion, while the alveolar macrophage subpopulation was significantly reduced. Trajectory analysis revealed that fibroblasts in IPF lungs could differentiate into myofibroblasts, and alveolar macrophages could transition into the macrophage_SPP1 subpopulation. Among T-cell subpopulations, only the CD4 T_FOXP3 subpopulation exhibited a significant change, whereas all four B-cell subpopulations showed significant proportional shifts. These findings provide a comprehensive view of the cellular alterations contributing to IPF pathogenesis. Extensive interactions among various cell populations and subpopulations were identified. The proportions of various cell populations and subpopulations in IPF lungs, including endothelial cells, fibroblasts, macrophages and B cells, were significantly altered. Further in-depth investigation into the roles of cell subpopulations with significantly altered proportions in the onset and progression of IPF will provide valuable insights into the pathological mechanisms underlying the disease. This understanding could facilitate the development of novel therapeutic strategies and medications for IPF treatment.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.50
自引率
0.00%
发文量
0
期刊介绍: The Journal of Cellular and Molecular Medicine serves as a bridge between physiology and cellular medicine, as well as molecular biology and molecular therapeutics. With a 20-year history, the journal adopts an interdisciplinary approach to showcase innovative discoveries. It publishes research aimed at advancing the collective understanding of the cellular and molecular mechanisms underlying diseases. The journal emphasizes translational studies that translate this knowledge into therapeutic strategies. Being fully open access, the journal is accessible to all readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信