Comprehensive Network Analysis of Lung Cancer Biomarkers Identifying Key Genes Through RNA-Seq Data and PPI Networks

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Meshrif Alruily, Murtada K. Elbashir, Mohamed Ezz, Bader Aldughayfiq, Majed Abdullah Alrowaily, Hisham Allahem, Mohanad Mohammed, Elsayed Mostafa, Ayman Mohamed Mostafa
{"title":"Comprehensive Network Analysis of Lung Cancer Biomarkers Identifying Key Genes Through RNA-Seq Data and PPI Networks","authors":"Meshrif Alruily,&nbsp;Murtada K. Elbashir,&nbsp;Mohamed Ezz,&nbsp;Bader Aldughayfiq,&nbsp;Majed Abdullah Alrowaily,&nbsp;Hisham Allahem,&nbsp;Mohanad Mohammed,&nbsp;Elsayed Mostafa,&nbsp;Ayman Mohamed Mostafa","doi":"10.1155/int/9994758","DOIUrl":null,"url":null,"abstract":"<div>\n <p>This study addresses the pressing need for improved lung cancer diagnosis and treatment by leveraging computational methods and omics data analysis. Lung cancer remains a leading cause of cancer-related deaths globally, highlighting the urgency for more effective diagnostic and therapeutic approaches. Current diagnostic methods, such as imaging and biopsies, suffer from limitations in sensitivity, specificity, and accessibility, often due to factors such as poor data quality, small sample sizes, and variability in data sources. These limitations highlight the necessity for the development of advanced noninvasive techniques. Computational methods utilizing omics data have shown promise in overcoming these challenges by comprehensively understanding the molecular pathways involved in lung cancer. We propose a novel approach that utilizes RNA-Seq data and employs LASSO regression with attention mechanisms to identify lung cancer biomarkers. Our results demonstrate the effectiveness of this approach in identifying potential biomarkers for lung cancer, including well-known genes such as TP53, EGFR, KRAS, ALK, and PIK3CA, validating the model’s ability to uncover key genes associated with lung cancer development and progression. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses revealed significant associations of the identified genes with critical biological processes and pathways, including protein synthesis, folding, cell adhesion, gene regulation, and immune responses. The PPI network analysis, constructed using the STRING database and Cytoscape application, highlighted a highly interconnected interaction landscape, with central hub genes playing pivotal roles in lung cancer progression. RPSA emerged as a crucial hub gene, consistently identified across different centrality measures. This study sheds light on the potential of computational methods and omics data analysis in improving lung cancer diagnosis and treatment, offering new insights for future research directions and personalized medicine strategies.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2025 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/9994758","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/int/9994758","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This study addresses the pressing need for improved lung cancer diagnosis and treatment by leveraging computational methods and omics data analysis. Lung cancer remains a leading cause of cancer-related deaths globally, highlighting the urgency for more effective diagnostic and therapeutic approaches. Current diagnostic methods, such as imaging and biopsies, suffer from limitations in sensitivity, specificity, and accessibility, often due to factors such as poor data quality, small sample sizes, and variability in data sources. These limitations highlight the necessity for the development of advanced noninvasive techniques. Computational methods utilizing omics data have shown promise in overcoming these challenges by comprehensively understanding the molecular pathways involved in lung cancer. We propose a novel approach that utilizes RNA-Seq data and employs LASSO regression with attention mechanisms to identify lung cancer biomarkers. Our results demonstrate the effectiveness of this approach in identifying potential biomarkers for lung cancer, including well-known genes such as TP53, EGFR, KRAS, ALK, and PIK3CA, validating the model’s ability to uncover key genes associated with lung cancer development and progression. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses revealed significant associations of the identified genes with critical biological processes and pathways, including protein synthesis, folding, cell adhesion, gene regulation, and immune responses. The PPI network analysis, constructed using the STRING database and Cytoscape application, highlighted a highly interconnected interaction landscape, with central hub genes playing pivotal roles in lung cancer progression. RPSA emerged as a crucial hub gene, consistently identified across different centrality measures. This study sheds light on the potential of computational methods and omics data analysis in improving lung cancer diagnosis and treatment, offering new insights for future research directions and personalized medicine strategies.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Intelligent Systems
International Journal of Intelligent Systems 工程技术-计算机:人工智能
CiteScore
11.30
自引率
14.30%
发文量
304
审稿时长
9 months
期刊介绍: The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信