Embedding clique subdivisions via crux

IF 1 2区 数学 Q1 MATHEMATICS
Donglei Yang, Fan Yang
{"title":"Embedding clique subdivisions via crux","authors":"Donglei Yang,&nbsp;Fan Yang","doi":"10.1112/jlms.70073","DOIUrl":null,"url":null,"abstract":"<p>For a graph <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> with average degree <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$d(G)$</annotation>\n </semantics></math> and a constant <span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\alpha &gt;0$</annotation>\n </semantics></math>, we denote by <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>C</mi>\n <mi>α</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$C_{\\alpha }(G)$</annotation>\n </semantics></math> the minimum order of a subgraph <span></span><math>\n <semantics>\n <mrow>\n <mi>H</mi>\n <mo>⊆</mo>\n <mi>G</mi>\n </mrow>\n <annotation>$H\\subseteq G$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>(</mo>\n <mi>H</mi>\n <mo>)</mo>\n <mo>⩾</mo>\n <mi>α</mi>\n <mi>d</mi>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$d(H)\\geqslant \\alpha d(G)$</annotation>\n </semantics></math>. Liu and Montgomery conjectured that every graph <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> contains <span></span><math>\n <semantics>\n <msub>\n <mi>K</mi>\n <mrow>\n <mi>Ω</mi>\n <mo>(</mo>\n <mi>t</mi>\n <mo>)</mo>\n </mrow>\n </msub>\n <annotation>$K_{\\Omega (t)}$</annotation>\n </semantics></math> as a subdivision for <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mo>=</mo>\n <mi>min</mi>\n <mo>{</mo>\n <mi>d</mi>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n <mo>,</mo>\n <msqrt>\n <mstyle>\n <mfrac>\n <mrow>\n <msub>\n <mi>C</mi>\n <mi>α</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <mrow>\n <mi>log</mi>\n <msub>\n <mi>C</mi>\n <mi>α</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n </mfrac>\n </mstyle>\n </msqrt>\n <mo>}</mo>\n </mrow>\n <annotation>$t=\\min \\lbrace d(G), \\sqrt {\\tfrac{C_{\\alpha }(G)}{\\log C_{\\alpha }(G)}}\\rbrace$</annotation>\n </semantics></math>. In the paper, we prove this conjecture.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 2","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70073","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For a graph G $G$ with average degree d ( G ) $d(G)$ and a constant α > 0 $\alpha >0$ , we denote by C α ( G ) $C_{\alpha }(G)$ the minimum order of a subgraph H G $H\subseteq G$ with d ( H ) α d ( G ) $d(H)\geqslant \alpha d(G)$ . Liu and Montgomery conjectured that every graph G $G$ contains K Ω ( t ) $K_{\Omega (t)}$ as a subdivision for t = min { d ( G ) , C α ( G ) log C α ( G ) } $t=\min \lbrace d(G), \sqrt {\tfrac{C_{\alpha }(G)}{\log C_{\alpha }(G)}}\rbrace$ . In the paper, we prove this conjecture.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信