Recursive Hybrid Compression for Sparse Matrix-Vector Multiplication on GPU

IF 1.5 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Zhixiang Zhao, Yanxia Wu, Guoyin Zhang, Yiqing Yang, Ruize Hong
{"title":"Recursive Hybrid Compression for Sparse Matrix-Vector Multiplication on GPU","authors":"Zhixiang Zhao,&nbsp;Yanxia Wu,&nbsp;Guoyin Zhang,&nbsp;Yiqing Yang,&nbsp;Ruize Hong","doi":"10.1002/cpe.8366","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Sparse Matrix-Vector Multiplication (SpMV) is a fundamental operation in scientific computing, machine learning, and data analysis. The performance of SpMV on GPUs is crucial for accelerating various applications. However, the efficiency of SpMV on GPUs is significantly affected by irregular memory access patterns, high memory bandwidth requirements, and insufficient exploitation of parallelism. In this paper, we propose a Recursive Hybrid Compression (RHC) method to address these challenges. RHC begins by splitting the initial matrix into two portions: an Ellpack (ELL) portion and a Coordinate (COO) portion. This partitioning is followed by further recursive division of the COO portion into additional ELL and COO portions, continuing this process until predefined termination criteria, based on a percentage threshold of the number of nonzero elements, are met. Additionally, we introduce a dynamic partitioning method to determine the optimal threshold for partitioning the matrix into ELL and COO portions based on the distribution of nonzero elements and the memory footprint. We develop the RHC algorithm to fully exploit the advantages of the ELL kernel on GPUs and achieve high thread-level parallelism. We evaluated our proposed method on two different NVIDIA GPUs: the GeForce RTX 2080 Ti and the A100, using a set of sparse matrices from the SuiteSparse Matrix Collection. We compare RHC with NVIDIA's cuSPARSE library and three state-of-the-art methods: SELLP, MergeBase, and BalanceCSR. RHC achieves average speedups of 2.13<span></span><math>\n <semantics>\n <mrow>\n <mo>×</mo>\n </mrow>\n <annotation>$$ \\times $$</annotation>\n </semantics></math>, 1.13<span></span><math>\n <semantics>\n <mrow>\n <mo>×</mo>\n </mrow>\n <annotation>$$ \\times $$</annotation>\n </semantics></math>, 1.87<span></span><math>\n <semantics>\n <mrow>\n <mo>×</mo>\n </mrow>\n <annotation>$$ \\times $$</annotation>\n </semantics></math>, and 1.27<span></span><math>\n <semantics>\n <mrow>\n <mo>×</mo>\n </mrow>\n <annotation>$$ \\times $$</annotation>\n </semantics></math> over cuSPARSE, SELLP, MergeBase, and BalanceCSR, respectively.</p>\n </div>","PeriodicalId":55214,"journal":{"name":"Concurrency and Computation-Practice & Experience","volume":"37 4-5","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrency and Computation-Practice & Experience","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpe.8366","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Sparse Matrix-Vector Multiplication (SpMV) is a fundamental operation in scientific computing, machine learning, and data analysis. The performance of SpMV on GPUs is crucial for accelerating various applications. However, the efficiency of SpMV on GPUs is significantly affected by irregular memory access patterns, high memory bandwidth requirements, and insufficient exploitation of parallelism. In this paper, we propose a Recursive Hybrid Compression (RHC) method to address these challenges. RHC begins by splitting the initial matrix into two portions: an Ellpack (ELL) portion and a Coordinate (COO) portion. This partitioning is followed by further recursive division of the COO portion into additional ELL and COO portions, continuing this process until predefined termination criteria, based on a percentage threshold of the number of nonzero elements, are met. Additionally, we introduce a dynamic partitioning method to determine the optimal threshold for partitioning the matrix into ELL and COO portions based on the distribution of nonzero elements and the memory footprint. We develop the RHC algorithm to fully exploit the advantages of the ELL kernel on GPUs and achieve high thread-level parallelism. We evaluated our proposed method on two different NVIDIA GPUs: the GeForce RTX 2080 Ti and the A100, using a set of sparse matrices from the SuiteSparse Matrix Collection. We compare RHC with NVIDIA's cuSPARSE library and three state-of-the-art methods: SELLP, MergeBase, and BalanceCSR. RHC achieves average speedups of 2.13 × $$ \times $$ , 1.13 × $$ \times $$ , 1.87 × $$ \times $$ , and 1.27 × $$ \times $$ over cuSPARSE, SELLP, MergeBase, and BalanceCSR, respectively.

GPU上稀疏矩阵-向量乘法的递归混合压缩
稀疏矩阵向量乘法(SpMV)是科学计算、机器学习和数据分析中的基本运算。SpMV在gpu上的性能对各种应用的加速至关重要。然而,SpMV在gpu上的效率受到不规则内存访问模式、高内存带宽需求和未充分利用并行性的显著影响。在本文中,我们提出递归混合压缩(RHC)方法来解决这些挑战。RHC首先将初始矩阵分成两个部分:Ellpack (ELL)部分和Coordinate (COO)部分。在此划分之后,将COO部分进一步递归划分为额外的ELL和COO部分,继续此过程,直到满足基于非零元素数量的百分比阈值的预定义终止标准。此外,我们引入了一种动态分区方法,根据非零元素的分布和内存占用来确定将矩阵划分为ELL和COO部分的最佳阈值。我们开发了RHC算法,以充分利用gpu上ELL内核的优势,实现高线程级并行性。我们在两种不同的NVIDIA gpu上评估了我们提出的方法:GeForce RTX 2080 Ti和A100,使用一组来自SuiteSparse矩阵集合的稀疏矩阵。我们将RHC与NVIDIA的cuSPARSE库和三种最先进的方法进行比较:SELLP, MergeBase和BalanceCSR。RHC实现了2.13倍的平均加速 $$ \times $$ , 1.13 × $$ \times $$ , 1.87 × $$ \times $$ 和1.27 × $$ \times $$ 分别在cuSPARSE, SELLP, MergeBase和BalanceCSR上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Concurrency and Computation-Practice & Experience
Concurrency and Computation-Practice & Experience 工程技术-计算机:理论方法
CiteScore
5.00
自引率
10.00%
发文量
664
审稿时长
9.6 months
期刊介绍: Concurrency and Computation: Practice and Experience (CCPE) publishes high-quality, original research papers, and authoritative research review papers, in the overlapping fields of: Parallel and distributed computing; High-performance computing; Computational and data science; Artificial intelligence and machine learning; Big data applications, algorithms, and systems; Network science; Ontologies and semantics; Security and privacy; Cloud/edge/fog computing; Green computing; and Quantum computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信