{"title":"Low-Light Image Enhancement Algorithm Based on Improved MSRCP With Chromaticity Preservation","authors":"Wenjian Feng, Zhiwen Wang, Chunmiao Wei, Xinhui Jiang, Yuhang Wang, Jiexia Huang","doi":"10.1002/cpe.8396","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In response to the issues of poor sharpness and low information entropy in traditional MSRCP (Multi-Scale Retinex with Color Restoration) algorithms for image enhancement, we propose an improved MSRCP algorithm for low-light image enhancement with chromaticity preservation. First, we replaced the extrema calculation method in the color restoration function with a calculation method based on clipped pixel ratios. Then, we combined guided filtering and Gaussian filtering to calculate the incident component. Finally, we conducted experiments using six different low-light images and compared the results with the traditional MSRCP algorithm, such as SSR, MSR, MSRCR, and MSRCP. The experimental results show that our method improved the sharpness and information entropy values in the five comparison images by 5.6%–35.6% and 0.18%–15.3%, respectively.</p>\n </div>","PeriodicalId":55214,"journal":{"name":"Concurrency and Computation-Practice & Experience","volume":"37 4-5","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrency and Computation-Practice & Experience","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpe.8396","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
In response to the issues of poor sharpness and low information entropy in traditional MSRCP (Multi-Scale Retinex with Color Restoration) algorithms for image enhancement, we propose an improved MSRCP algorithm for low-light image enhancement with chromaticity preservation. First, we replaced the extrema calculation method in the color restoration function with a calculation method based on clipped pixel ratios. Then, we combined guided filtering and Gaussian filtering to calculate the incident component. Finally, we conducted experiments using six different low-light images and compared the results with the traditional MSRCP algorithm, such as SSR, MSR, MSRCR, and MSRCP. The experimental results show that our method improved the sharpness and information entropy values in the five comparison images by 5.6%–35.6% and 0.18%–15.3%, respectively.
期刊介绍:
Concurrency and Computation: Practice and Experience (CCPE) publishes high-quality, original research papers, and authoritative research review papers, in the overlapping fields of:
Parallel and distributed computing;
High-performance computing;
Computational and data science;
Artificial intelligence and machine learning;
Big data applications, algorithms, and systems;
Network science;
Ontologies and semantics;
Security and privacy;
Cloud/edge/fog computing;
Green computing; and
Quantum computing.