Cascade Ownership Verification Framework Based on Invisible Watermark for Model Copyright Protection

IF 1.5 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Ruoxi Wang, Yujia Zhu, Xia Daoxun
{"title":"Cascade Ownership Verification Framework Based on Invisible Watermark for Model Copyright Protection","authors":"Ruoxi Wang,&nbsp;Yujia Zhu,&nbsp;Xia Daoxun","doi":"10.1002/cpe.8394","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Successfully training a model requires substantial computational power, excellent model design, and high training costs, which implies that a well-trained model holds significant commercial value. Protecting a trained Deep Neural Network (DNN) model from Intellectual Property (IP) infringement has become a matter of intense concern recently. Particularly, embedding and verifying watermarks in black-box models without accessing internal model parameters, while ensuring the robustness and invisibility of the watermark, remains a challenging issue. Unlike many existing methods, we propose a cascade ownership verification framework based on invisible watermarks, with a focus on how to effectively protect the copyright of black-box watermark models and detect unauthorized users' infringement behaviors. This framework consists of two parts: watermark generation and copyright verification. In the watermark generation phase, watermarked samples are generated from key samples and label images. The difference between watermarked samples and key samples is imperceptible, while a specific identifier has been injected into the watermarked samples, leaving a backdoor as an entry point for copyright verification. The copyright verification phase employs hypothesis testing to enhance the confidence level of verification. In image classification tasks based on MNIST, CIFAR-10, and CIFAR-100 datasets, experiments were conducted on several popular deep learning models. The experimental results show that this framework offers high security and effectiveness in protecting model copyrights and demonstrates strong robustness against pruning and fine-tuning attacks.</p>\n </div>","PeriodicalId":55214,"journal":{"name":"Concurrency and Computation-Practice & Experience","volume":"37 4-5","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrency and Computation-Practice & Experience","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpe.8394","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Successfully training a model requires substantial computational power, excellent model design, and high training costs, which implies that a well-trained model holds significant commercial value. Protecting a trained Deep Neural Network (DNN) model from Intellectual Property (IP) infringement has become a matter of intense concern recently. Particularly, embedding and verifying watermarks in black-box models without accessing internal model parameters, while ensuring the robustness and invisibility of the watermark, remains a challenging issue. Unlike many existing methods, we propose a cascade ownership verification framework based on invisible watermarks, with a focus on how to effectively protect the copyright of black-box watermark models and detect unauthorized users' infringement behaviors. This framework consists of two parts: watermark generation and copyright verification. In the watermark generation phase, watermarked samples are generated from key samples and label images. The difference between watermarked samples and key samples is imperceptible, while a specific identifier has been injected into the watermarked samples, leaving a backdoor as an entry point for copyright verification. The copyright verification phase employs hypothesis testing to enhance the confidence level of verification. In image classification tasks based on MNIST, CIFAR-10, and CIFAR-100 datasets, experiments were conducted on several popular deep learning models. The experimental results show that this framework offers high security and effectiveness in protecting model copyrights and demonstrates strong robustness against pruning and fine-tuning attacks.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Concurrency and Computation-Practice & Experience
Concurrency and Computation-Practice & Experience 工程技术-计算机:理论方法
CiteScore
5.00
自引率
10.00%
发文量
664
审稿时长
9.6 months
期刊介绍: Concurrency and Computation: Practice and Experience (CCPE) publishes high-quality, original research papers, and authoritative research review papers, in the overlapping fields of: Parallel and distributed computing; High-performance computing; Computational and data science; Artificial intelligence and machine learning; Big data applications, algorithms, and systems; Network science; Ontologies and semantics; Security and privacy; Cloud/edge/fog computing; Green computing; and Quantum computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信