{"title":"Research on Multi-Scale Parallel Joint Optimization CNN for Arrhythmia Diagnosis","authors":"Wenping Chen, Huibin Wang, Zhe Chen, Lili Zhang","doi":"10.1002/cpe.8383","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The morphological characteristics of electrocardiograms (ECGs) serve as a fundamental basis for diagnosing arrhythmias. Convolutional neural networks (CNNs), leveraging their local receptive field properties, effectively capture the morphological features of ECG signals and have been extensively employed in the automatic diagnosis of arrhythmias. However, the variability in the duration of ECG morphological features renders single-scale convolutional kernels inadequate for fully extracting these features. To address this limitation, this study proposes a multi-scale parallel joint optimization convolutional neural network (MPJO_CNN). The proposed method utilizes convolutional kernels of varying scales to extract ECG features, further refining these features via parallel computation and implementing a joint optimization strategy to enhance classification performance. Experimental results demonstrate that on the MIT-BIH arrhythmia database, this method not only achieved state-of-the-art performance, with an accuracy of 99.41% and an F1 score of 98.09%, but also showed high sensitivity to classes with fewer samples.</p>\n </div>","PeriodicalId":55214,"journal":{"name":"Concurrency and Computation-Practice & Experience","volume":"37 4-5","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrency and Computation-Practice & Experience","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpe.8383","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The morphological characteristics of electrocardiograms (ECGs) serve as a fundamental basis for diagnosing arrhythmias. Convolutional neural networks (CNNs), leveraging their local receptive field properties, effectively capture the morphological features of ECG signals and have been extensively employed in the automatic diagnosis of arrhythmias. However, the variability in the duration of ECG morphological features renders single-scale convolutional kernels inadequate for fully extracting these features. To address this limitation, this study proposes a multi-scale parallel joint optimization convolutional neural network (MPJO_CNN). The proposed method utilizes convolutional kernels of varying scales to extract ECG features, further refining these features via parallel computation and implementing a joint optimization strategy to enhance classification performance. Experimental results demonstrate that on the MIT-BIH arrhythmia database, this method not only achieved state-of-the-art performance, with an accuracy of 99.41% and an F1 score of 98.09%, but also showed high sensitivity to classes with fewer samples.
期刊介绍:
Concurrency and Computation: Practice and Experience (CCPE) publishes high-quality, original research papers, and authoritative research review papers, in the overlapping fields of:
Parallel and distributed computing;
High-performance computing;
Computational and data science;
Artificial intelligence and machine learning;
Big data applications, algorithms, and systems;
Network science;
Ontologies and semantics;
Security and privacy;
Cloud/edge/fog computing;
Green computing; and
Quantum computing.