Protective Effect of Carvedilol Against Oxidative Stress Induced by Palmitic Acid in Primary Rat Hepatocytes

IF 2.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Sandra A. Serna Salas, Turtushikh Damba, Manon Buist-Homan, Han Moshage
{"title":"Protective Effect of Carvedilol Against Oxidative Stress Induced by Palmitic Acid in Primary Rat Hepatocytes","authors":"Sandra A. Serna Salas,&nbsp;Turtushikh Damba,&nbsp;Manon Buist-Homan,&nbsp;Han Moshage","doi":"10.1002/cbf.70057","DOIUrl":null,"url":null,"abstract":"<p>Hepatocyte lipotoxicity (HL) is an important factor in the pathogenesis of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). It is defined as the detrimental effects of exposure to (excessive) amounts of toxic lipid species, leading to increased mitochondrial β-oxidation, oxidative stress (OxS), and organellar dysfunction. Carvedilol (CV) is a β-adrenergic blocker with antioxidant properties. To elucidate whether CV protects hepatocytes against lipotoxicity induced by palmitic acid (PA) by reducing OxS and endoplasmic reticulum (ER) stress. Primary rat hepatocytes (rHep) were used. Lipotoxicity was induced by PA (1 mmol/L). Cell damage was evaluated by Sytox Green staining. Mitochondrial generation of reactive oxygen species (mROS) was assessed by MitoSox. mRNA and protein expression were measured by qPCR and Western blot, respectively. Lipid accumulation was measured by Oil Red O staining and triglyceride (TG) content. PA induced cell death in &gt; 80% of cells and increased mROS generation. PA increased mRNA expression of ER stress markers CHOP and sXBP1 and slightly increased lipid accumulation. Expression of the β-oxidation-related gene Cpt1a was increased. CV (10 µmol/L) significantly reduced PA-induced cell death to control levels (&lt; 8% of total cells), and mROS generation and expression of the mitochondrial antioxidant enzymes Sod2 and Cat were increased by 40% by CV in the presence of PA. CV did not change the expression of ER stress markers. CV, added before PA, protects rHep against PA-induced cytotoxicity by reducing OxS and increasing the expression of antioxidant enzymes without any additional protective effect on ER stress or lipid accumulation.</p>","PeriodicalId":9669,"journal":{"name":"Cell Biochemistry and Function","volume":"43 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cbf.70057","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Function","FirstCategoryId":"99","ListUrlMain":"https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/cbf.70057","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Hepatocyte lipotoxicity (HL) is an important factor in the pathogenesis of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). It is defined as the detrimental effects of exposure to (excessive) amounts of toxic lipid species, leading to increased mitochondrial β-oxidation, oxidative stress (OxS), and organellar dysfunction. Carvedilol (CV) is a β-adrenergic blocker with antioxidant properties. To elucidate whether CV protects hepatocytes against lipotoxicity induced by palmitic acid (PA) by reducing OxS and endoplasmic reticulum (ER) stress. Primary rat hepatocytes (rHep) were used. Lipotoxicity was induced by PA (1 mmol/L). Cell damage was evaluated by Sytox Green staining. Mitochondrial generation of reactive oxygen species (mROS) was assessed by MitoSox. mRNA and protein expression were measured by qPCR and Western blot, respectively. Lipid accumulation was measured by Oil Red O staining and triglyceride (TG) content. PA induced cell death in > 80% of cells and increased mROS generation. PA increased mRNA expression of ER stress markers CHOP and sXBP1 and slightly increased lipid accumulation. Expression of the β-oxidation-related gene Cpt1a was increased. CV (10 µmol/L) significantly reduced PA-induced cell death to control levels (< 8% of total cells), and mROS generation and expression of the mitochondrial antioxidant enzymes Sod2 and Cat were increased by 40% by CV in the presence of PA. CV did not change the expression of ER stress markers. CV, added before PA, protects rHep against PA-induced cytotoxicity by reducing OxS and increasing the expression of antioxidant enzymes without any additional protective effect on ER stress or lipid accumulation.

Abstract Image

Abstract Image

Abstract Image

卡维地洛对棕榈酸诱导大鼠原代肝细胞氧化应激的保护作用
肝细胞脂毒性(HL)是代谢功能障碍相关脂肪变性肝病(MASLD)发病的重要因素。它被定义为暴露于(过量)有毒脂质物种的有害影响,导致线粒体β氧化,氧化应激(OxS)增加和细胞器功能障碍。卡维地洛(CV)是一种具有抗氧化特性的β-肾上腺素能阻滞剂。目的:探讨CV是否通过降低OxS和内质网(ER)应激,保护肝细胞免受棕榈酸(PA)诱导的脂肪毒性。采用大鼠原代肝细胞(rHep)。1 mmol/L PA诱导脂毒性。Sytox绿染色法观察细胞损伤情况。线粒体生成活性氧(mROS)通过MitoSox评估。分别用qPCR和Western blot检测mRNA和蛋白的表达。油红O染色和甘油三酯(TG)含量测定脂质积累。PA诱导80%的细胞死亡,增加mROS的产生。PA增加内质网应激标志物CHOP和sXBP1的mRNA表达,并轻微增加脂质积累。β-氧化相关基因Cpt1a表达增加。CV(10µmol/L)显著降低PA诱导的细胞死亡至控制水平(占总细胞的8%),在PA存在的情况下,CV使mROS的生成和线粒体抗氧化酶Sod2和Cat的表达增加了40%。CV未改变内质网应激标志物的表达。在PA之前添加CV,通过降低OxS和增加抗氧化酶的表达来保护rHep免受PA诱导的细胞毒性,而对内质网应激或脂质积累没有任何额外的保护作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Biochemistry and Function
Cell Biochemistry and Function 生物-生化与分子生物学
CiteScore
6.20
自引率
0.00%
发文量
93
审稿时长
6-12 weeks
期刊介绍: Cell Biochemistry and Function publishes original research articles and reviews on the mechanisms whereby molecular and biochemical processes control cellular activity with a particular emphasis on the integration of molecular and cell biology, biochemistry and physiology in the regulation of tissue function in health and disease. The primary remit of the journal is on mammalian biology both in vivo and in vitro but studies of cells in situ are especially encouraged. Observational and pathological studies will be considered providing they include a rational discussion of the possible molecular and biochemical mechanisms behind them and the immediate impact of these observations to our understanding of mammalian biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信