{"title":"Heisenberg indistinguishability principle versus magnetic hyperfine fields","authors":"Mohammad Ghafari, Herbert Gleiter, Tao Feng","doi":"10.1186/s11671-025-04202-0","DOIUrl":null,"url":null,"abstract":"<div><p>In previous investigations it was reported that certain transition metal-rich amorphous alloys consist of distorted bcc nano-clusters. Two kinds of these amorphous alloys are of special interest due to their physical properties: (1) metallic glasses with no boundaries between grains and (2) nanoglasses. Nanoglasses are specified with a high proportion of boundary /Interface between amorphous grains. Similar to the nanoglasses, the nano-sized crystalline clusters such as bcc-Fe clusters consist meanly of two components: (1) nanometer-size bcc-Fe clusters (frequently called nanograins with sizes of about 3 nm or less) and (2) Interfaces between grain. A fundamentally feature of these materials seems to be their magnetic properties that are controlled by a quantum mechanical effect, the indistinguishability effect. Based on the experimentally observed magnetic properties of nano-sized bcc-Fe, it is suggesting that the application of the indistinguishability effect may open the way for the production and understanding of this class of materials.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-025-04202-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-025-04202-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In previous investigations it was reported that certain transition metal-rich amorphous alloys consist of distorted bcc nano-clusters. Two kinds of these amorphous alloys are of special interest due to their physical properties: (1) metallic glasses with no boundaries between grains and (2) nanoglasses. Nanoglasses are specified with a high proportion of boundary /Interface between amorphous grains. Similar to the nanoglasses, the nano-sized crystalline clusters such as bcc-Fe clusters consist meanly of two components: (1) nanometer-size bcc-Fe clusters (frequently called nanograins with sizes of about 3 nm or less) and (2) Interfaces between grain. A fundamentally feature of these materials seems to be their magnetic properties that are controlled by a quantum mechanical effect, the indistinguishability effect. Based on the experimentally observed magnetic properties of nano-sized bcc-Fe, it is suggesting that the application of the indistinguishability effect may open the way for the production and understanding of this class of materials.
期刊介绍:
Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.