{"title":"The potential of perovskite solar cell-thermoelectric tandem devices†","authors":"Zhaoyu Lou, Jiaqi Ju, Hao Li and Zhiping Wang","doi":"10.1039/D4SE00690A","DOIUrl":null,"url":null,"abstract":"<p >Integration of metal-halide perovskite solar cells (PSCs) with thermoelectrics (TEs) to form hybrid PSC-TE tandem devices presents a promising avenue for maximizing solar spectrum utilization. However, prevailing simulation models often rely on predetermined hot side temperatures and frequently overlook real-world performance analysis. Here, we present a comprehensive model for simulating the energy yield and temperature dynamics of the PSC-TE system. Our novel approach incorporates the thermal equilibrium equation to derive the steady-state temperature of the device through simulation. Additionally, we elucidate the significant contribution of background radiation to energy generation and explore the immense potential of PSC-TE tandem systems under various real-world conditions most relevant to practical applications. We demonstrate that PSC-TE tandems can achieve 5% improvement in power conversion efficiency (PCE) under normal conditions. And in some places like Antarctica, the PCE of tandem systems can reach 35.4% with consideration of optical loss, and up to 56.6% with the application of concentrator architecture. We also show their great advantages compared to pure photovoltaic devices in space, with improvement exceeding 50% in PCE; the tandem system can achieve a high PCE up to 76% with its strong ability to maintain device temperature (<em>T</em><small><sub>D</sub></small>) and use of background radiation. This proposed modeling framework provides a valuable tool for optimizing the design of PSC-TE tandem systems, with particular emphasis on thermal and optical management strategies.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 4","pages":" 953-961"},"PeriodicalIF":5.0000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/se/d4se00690a","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Integration of metal-halide perovskite solar cells (PSCs) with thermoelectrics (TEs) to form hybrid PSC-TE tandem devices presents a promising avenue for maximizing solar spectrum utilization. However, prevailing simulation models often rely on predetermined hot side temperatures and frequently overlook real-world performance analysis. Here, we present a comprehensive model for simulating the energy yield and temperature dynamics of the PSC-TE system. Our novel approach incorporates the thermal equilibrium equation to derive the steady-state temperature of the device through simulation. Additionally, we elucidate the significant contribution of background radiation to energy generation and explore the immense potential of PSC-TE tandem systems under various real-world conditions most relevant to practical applications. We demonstrate that PSC-TE tandems can achieve 5% improvement in power conversion efficiency (PCE) under normal conditions. And in some places like Antarctica, the PCE of tandem systems can reach 35.4% with consideration of optical loss, and up to 56.6% with the application of concentrator architecture. We also show their great advantages compared to pure photovoltaic devices in space, with improvement exceeding 50% in PCE; the tandem system can achieve a high PCE up to 76% with its strong ability to maintain device temperature (TD) and use of background radiation. This proposed modeling framework provides a valuable tool for optimizing the design of PSC-TE tandem systems, with particular emphasis on thermal and optical management strategies.
期刊介绍:
Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.