Design and Evaluation of an Electromagnetic Bounce-Type Refreshable Braille Display

IF 4.8 2区 医学 Q2 ENGINEERING, BIOMEDICAL
Dapeng Chen;Song Zhang;Lianshun Shen;Chenkai Li;Jianying Hua;Jia Liu;Aiguo Song
{"title":"Design and Evaluation of an Electromagnetic Bounce-Type Refreshable Braille Display","authors":"Dapeng Chen;Song Zhang;Lianshun Shen;Chenkai Li;Jianying Hua;Jia Liu;Aiguo Song","doi":"10.1109/TNSRE.2025.3535564","DOIUrl":null,"url":null,"abstract":"To help the blind or visually impaired (BVI) read digitally conveniently and at low cost, we propose a bounce-type actuator driven by electromagnetic force, and based on this, a refreshable Braille display (RBD) which can display both Braille and tactile graphic information is manufactured. The internal components of the bounce-type actuator include an electromagnet and two permanent magnets placed in a stepped manner. By passing current in different directions to the coil, the electromagnet can bounce up and down between the two permanent magnets under the action of magnetic force, thereby achieving changes in the raised state of the Braille dot. The permanent magnets placed in staggered positions have an attractive and supportive effect on the electromagnet, so the raised Braille dot can be locked in a specific position when the electromagnet is not powered on and provide a large latching force. In this paper, the force analysis and finite element simulation of the actuator actuation condition of the Braille dot actuator are carried out, and the refresh rate is measured experimentally to be about 16 Hz. Meanwhile, the overall refresh rate of the prototype can be up to 2.7 Hz. Benefiting from the full-latching structure, the RBD proposed in this paper is characterized by a large latching force, a high refresh rate, and an easy scalability. It also has the advantages of low cost, low energy consumption, reliability, and durability, providing an easy-to-promote tool for BVI to read digital information.","PeriodicalId":13419,"journal":{"name":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","volume":"33 ","pages":"705-716"},"PeriodicalIF":4.8000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10856226","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10856226/","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To help the blind or visually impaired (BVI) read digitally conveniently and at low cost, we propose a bounce-type actuator driven by electromagnetic force, and based on this, a refreshable Braille display (RBD) which can display both Braille and tactile graphic information is manufactured. The internal components of the bounce-type actuator include an electromagnet and two permanent magnets placed in a stepped manner. By passing current in different directions to the coil, the electromagnet can bounce up and down between the two permanent magnets under the action of magnetic force, thereby achieving changes in the raised state of the Braille dot. The permanent magnets placed in staggered positions have an attractive and supportive effect on the electromagnet, so the raised Braille dot can be locked in a specific position when the electromagnet is not powered on and provide a large latching force. In this paper, the force analysis and finite element simulation of the actuator actuation condition of the Braille dot actuator are carried out, and the refresh rate is measured experimentally to be about 16 Hz. Meanwhile, the overall refresh rate of the prototype can be up to 2.7 Hz. Benefiting from the full-latching structure, the RBD proposed in this paper is characterized by a large latching force, a high refresh rate, and an easy scalability. It also has the advantages of low cost, low energy consumption, reliability, and durability, providing an easy-to-promote tool for BVI to read digital information.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
8.20%
发文量
479
审稿时长
6-12 weeks
期刊介绍: Rehabilitative and neural aspects of biomedical engineering, including functional electrical stimulation, acoustic dynamics, human performance measurement and analysis, nerve stimulation, electromyography, motor control and stimulation; and hardware and software applications for rehabilitation engineering and assistive devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信