How similar are two elections?

IF 1.1 3区 计算机科学 Q1 BUSINESS, FINANCE
Piotr Faliszewski , Piotr Skowron , Arkadii Slinko , Krzysztof Sornat , Stanisław Szufa , Nimrod Talmon
{"title":"How similar are two elections?","authors":"Piotr Faliszewski ,&nbsp;Piotr Skowron ,&nbsp;Arkadii Slinko ,&nbsp;Krzysztof Sornat ,&nbsp;Stanisław Szufa ,&nbsp;Nimrod Talmon","doi":"10.1016/j.jcss.2025.103632","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce and study isomorphic distances between ordinal elections (with the same numbers of candidates and voters). The main feature of these distances is that they are invariant to renaming the candidates and voters, and two elections are at distance zero if and only if they are isomorphic. Specifically, we consider isomorphic extensions of distances between preference orders: Given such a distance <em>d</em>, we extend it to distance <span><math><mi>d</mi><mtext>-</mtext><mrow><mi>ID</mi></mrow></math></span> between elections by unifying candidate names and finding a matching between the votes, so that the sum of the <em>d</em>-distances between the matched votes is as small as possible. We show that testing isomorphism of two elections can be done in polynomial time so, in principle, such distances can be tractable. Yet, we show that two very natural isomorphic distances are NP-complete and hard to approximate. We attempt to rectify the situation by showing FPT algorithms for several natural parameterizations.</div></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"150 ","pages":"Article 103632"},"PeriodicalIF":1.1000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000025000145","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce and study isomorphic distances between ordinal elections (with the same numbers of candidates and voters). The main feature of these distances is that they are invariant to renaming the candidates and voters, and two elections are at distance zero if and only if they are isomorphic. Specifically, we consider isomorphic extensions of distances between preference orders: Given such a distance d, we extend it to distance d-ID between elections by unifying candidate names and finding a matching between the votes, so that the sum of the d-distances between the matched votes is as small as possible. We show that testing isomorphism of two elections can be done in polynomial time so, in principle, such distances can be tractable. Yet, we show that two very natural isomorphic distances are NP-complete and hard to approximate. We attempt to rectify the situation by showing FPT algorithms for several natural parameterizations.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computer and System Sciences
Journal of Computer and System Sciences 工程技术-计算机:理论方法
CiteScore
3.70
自引率
0.00%
发文量
58
审稿时长
68 days
期刊介绍: The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions. Research areas include traditional subjects such as: • Theory of algorithms and computability • Formal languages • Automata theory Contemporary subjects such as: • Complexity theory • Algorithmic Complexity • Parallel & distributed computing • Computer networks • Neural networks • Computational learning theory • Database theory & practice • Computer modeling of complex systems • Security and Privacy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信