Attentional dysfunction arises from right frontocentral and occipital network connectivity in Parkinson's disease

Q4 Neuroscience
Isobel Timothea French , Kuo-Hsuan Chang , Wei-Kuang Liang , Wen-Sheng Chang , Yen-Shi Lo , Yi-Ru Wang , Mei-Ling Cheng , Norden E. Huang , Hsiu-Chuan Wu , Siew-Na Lim , Chiung-Mei Chen , Chi-Hung Juan
{"title":"Attentional dysfunction arises from right frontocentral and occipital network connectivity in Parkinson's disease","authors":"Isobel Timothea French ,&nbsp;Kuo-Hsuan Chang ,&nbsp;Wei-Kuang Liang ,&nbsp;Wen-Sheng Chang ,&nbsp;Yen-Shi Lo ,&nbsp;Yi-Ru Wang ,&nbsp;Mei-Ling Cheng ,&nbsp;Norden E. Huang ,&nbsp;Hsiu-Chuan Wu ,&nbsp;Siew-Na Lim ,&nbsp;Chiung-Mei Chen ,&nbsp;Chi-Hung Juan","doi":"10.1016/j.ynirp.2025.100241","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>The Flanker task measures visuospatial attention and assesses the attentional network by distinguishing pathways for enhancing information at attended regions and suppressing information at unattended ones (Kopp et al., 1996). In Parkinson's disease (PD), the attentional network is impaired due to dysfunctional fronto-subcortical circuits connected to the basal ganglia, disrupting response selection and inhibition. While electroencephalography (EEG) may reveal abnormalities of these circuits in PD, dynamic brain oscillations critical for interareal communications cannot be deciphered with conventional time-frequency analyses.</div></div><div><h3>Objective</h3><div>To utilize the novel Holo-Hilbert Spectral Analysis (HHSA) to reveal dynamic EEG features of the Flanker task in PD patients and healthy normal controls for differentiating and elucidating attentional network deficits in patients.</div></div><div><h3>Methods</h3><div>The novel HHSA was applied to uncover nonlinear features of the Flanker task EEG and to analyse connectivity using phase-amplitude cross-frequency coupling.</div></div><div><h3>Results</h3><div>Holo-Hilbert transform (HHT) results showed an attenuated midfrontal theta (FMθ) in the congruency effect in PD patients, consistent with past studies. HHSA showed a loss of low-frequency amplitude modulations (<em>f</em><sub>am</sub>) in the theta carrier frequency band (<em>f</em><sub>c</sub>) during the congruency effect in PD. Importantly, connectivity analyses using the Holo-Hilbert cross-frequency phase clustering (HHCFPC) revealed a loss of theta-gamma cross frequency coupling (CFC) from the right prefrontal cortex to other frontal and contralateral regions. Decrements were also shown in PD patients from right frontal cortical to occipital areas in theta-beta CFC.</div></div><div><h3>Conclusions</h3><div>These visuospatial attention deficits of PD revealed with the advanced analytical method of the HHSA and HHCFPC may inaugurate further neurophysiological biomarkers for cognitive function evaluation in PD and related movement disorders.</div></div>","PeriodicalId":74277,"journal":{"name":"Neuroimage. Reports","volume":"5 1","pages":"Article 100241"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroimage. Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666956025000091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 0

Abstract

Background

The Flanker task measures visuospatial attention and assesses the attentional network by distinguishing pathways for enhancing information at attended regions and suppressing information at unattended ones (Kopp et al., 1996). In Parkinson's disease (PD), the attentional network is impaired due to dysfunctional fronto-subcortical circuits connected to the basal ganglia, disrupting response selection and inhibition. While electroencephalography (EEG) may reveal abnormalities of these circuits in PD, dynamic brain oscillations critical for interareal communications cannot be deciphered with conventional time-frequency analyses.

Objective

To utilize the novel Holo-Hilbert Spectral Analysis (HHSA) to reveal dynamic EEG features of the Flanker task in PD patients and healthy normal controls for differentiating and elucidating attentional network deficits in patients.

Methods

The novel HHSA was applied to uncover nonlinear features of the Flanker task EEG and to analyse connectivity using phase-amplitude cross-frequency coupling.

Results

Holo-Hilbert transform (HHT) results showed an attenuated midfrontal theta (FMθ) in the congruency effect in PD patients, consistent with past studies. HHSA showed a loss of low-frequency amplitude modulations (fam) in the theta carrier frequency band (fc) during the congruency effect in PD. Importantly, connectivity analyses using the Holo-Hilbert cross-frequency phase clustering (HHCFPC) revealed a loss of theta-gamma cross frequency coupling (CFC) from the right prefrontal cortex to other frontal and contralateral regions. Decrements were also shown in PD patients from right frontal cortical to occipital areas in theta-beta CFC.

Conclusions

These visuospatial attention deficits of PD revealed with the advanced analytical method of the HHSA and HHCFPC may inaugurate further neurophysiological biomarkers for cognitive function evaluation in PD and related movement disorders.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuroimage. Reports
Neuroimage. Reports Neuroscience (General)
CiteScore
1.90
自引率
0.00%
发文量
0
审稿时长
87 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信