{"title":"Enhanced therapeutic precision using dual drug-loaded nanomaterials for targeted cancer photodynamic therapy","authors":"Aishat Adejoke Obalola, Heidi Abrahamse, Sathish Sundar Dhilip Kumar","doi":"10.1016/j.biopha.2025.117909","DOIUrl":null,"url":null,"abstract":"<div><div>Combination therapy has expanded significantly, including dual drug-loaded nanomaterials in drug delivery systems. Cancer therapy can be developed by targeting cancer cells and lessening the adverse consequences of anticancer drugs, which are just two of the numerous intriguing possibilities in this research field. Dual-drug delivery nanosystems that utilize nanotechnology to combine dual-drug administration may overcome the limitations of free drugs, the properties of nanomaterials, and the combined action of two drugs work together to overcome several drug-resistant systems within cancerous cells. It is essential to design dual-drug delivery nanosystems that use various multidrug-resistant techniques to overcome drug resistance mechanisms and enhance the effectiveness of clinical antitumor therapy. In this study, we discuss the use of photosensitizers in cancer photodynamic therapy, nanomaterials with dual-drug loading for targeted drug delivery, and the function and impact of nanomaterials in cancer photodynamic therapy. Furthermore, an overview of the drug-loaded nanomaterials <em>in vitro</em> and <em>in vivo</em> activity for cancer photodynamic treatment is discussed. The commercial and clinical applications of photosensitizer-loaded nanoparticles in cancer photodynamic therapy are also briefly discussed in the study. A key finding of the study is the importance of nanomaterials and dual drugs as effective drug delivery systems in cancer treatment.</div></div>","PeriodicalId":8966,"journal":{"name":"Biomedicine & Pharmacotherapy","volume":"184 ","pages":"Article 117909"},"PeriodicalIF":6.9000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicine & Pharmacotherapy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0753332225001039","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Combination therapy has expanded significantly, including dual drug-loaded nanomaterials in drug delivery systems. Cancer therapy can be developed by targeting cancer cells and lessening the adverse consequences of anticancer drugs, which are just two of the numerous intriguing possibilities in this research field. Dual-drug delivery nanosystems that utilize nanotechnology to combine dual-drug administration may overcome the limitations of free drugs, the properties of nanomaterials, and the combined action of two drugs work together to overcome several drug-resistant systems within cancerous cells. It is essential to design dual-drug delivery nanosystems that use various multidrug-resistant techniques to overcome drug resistance mechanisms and enhance the effectiveness of clinical antitumor therapy. In this study, we discuss the use of photosensitizers in cancer photodynamic therapy, nanomaterials with dual-drug loading for targeted drug delivery, and the function and impact of nanomaterials in cancer photodynamic therapy. Furthermore, an overview of the drug-loaded nanomaterials in vitro and in vivo activity for cancer photodynamic treatment is discussed. The commercial and clinical applications of photosensitizer-loaded nanoparticles in cancer photodynamic therapy are also briefly discussed in the study. A key finding of the study is the importance of nanomaterials and dual drugs as effective drug delivery systems in cancer treatment.
期刊介绍:
Biomedicine & Pharmacotherapy stands as a multidisciplinary journal, presenting a spectrum of original research reports, reviews, and communications in the realms of clinical and basic medicine, as well as pharmacology. The journal spans various fields, including Cancer, Nutriceutics, Neurodegenerative, Cardiac, and Infectious Diseases.