Dipak Koirala , Surendra K. Gautam , I. Francis Cheng , Peter B. Allen
{"title":"All Iron Battery 3.0","authors":"Dipak Koirala , Surendra K. Gautam , I. Francis Cheng , Peter B. Allen","doi":"10.1016/j.ohx.2025.e00629","DOIUrl":null,"url":null,"abstract":"<div><div>Battery storage technology can address a key limitation to renewable energy. Renewable electricity generation (solar and wind) is intermittent. An inexpensive energy storage device with excellent rechargeability and safety is critical for grid applications and for the global transition to renewable energy. In this work, we introduce an energy storage secondary battery based on an aqueous all-iron chemistry with redox mediators. The cell employs commodity chemicals methyl viologen and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) at the anode and cathode, respectively. The result is a highly rechargeable, low-cost energy storage system with a good price-performance ratio compared to commercial rechargeable batteries that is stable for 100+ cycles with 84 % capacity retention. The cell has a volumetric capacity of 9.6 Ah/L (energy of 11.52 wh/L) and power density of 72 Watts/m<sup>2</sup>.</div></div>","PeriodicalId":37503,"journal":{"name":"HardwareX","volume":"21 ","pages":"Article e00629"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HardwareX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468067225000070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Battery storage technology can address a key limitation to renewable energy. Renewable electricity generation (solar and wind) is intermittent. An inexpensive energy storage device with excellent rechargeability and safety is critical for grid applications and for the global transition to renewable energy. In this work, we introduce an energy storage secondary battery based on an aqueous all-iron chemistry with redox mediators. The cell employs commodity chemicals methyl viologen and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) at the anode and cathode, respectively. The result is a highly rechargeable, low-cost energy storage system with a good price-performance ratio compared to commercial rechargeable batteries that is stable for 100+ cycles with 84 % capacity retention. The cell has a volumetric capacity of 9.6 Ah/L (energy of 11.52 wh/L) and power density of 72 Watts/m2.
HardwareXEngineering-Industrial and Manufacturing Engineering
CiteScore
4.10
自引率
18.20%
发文量
124
审稿时长
24 weeks
期刊介绍:
HardwareX is an open access journal established to promote free and open source designing, building and customizing of scientific infrastructure (hardware). HardwareX aims to recognize researchers for the time and effort in developing scientific infrastructure while providing end-users with sufficient information to replicate and validate the advances presented. HardwareX is open to input from all scientific, technological and medical disciplines. Scientific infrastructure will be interpreted in the broadest sense. Including hardware modifications to existing infrastructure, sensors and tools that perform measurements and other functions outside of the traditional lab setting (such as wearables, air/water quality sensors, and low cost alternatives to existing tools), and the creation of wholly new tools for either standard or novel laboratory tasks. Authors are encouraged to submit hardware developments that address all aspects of science, not only the final measurement, for example, enhancements in sample preparation and handling, user safety, and quality control. The use of distributed digital manufacturing strategies (e.g. 3-D printing) is encouraged. All designs must be submitted under an open hardware license.