Multi-omics unveils strain-specific neuroactive metabolite production linked to inflammation modulation by Bacteroides and their extracellular vesicles
{"title":"Multi-omics unveils strain-specific neuroactive metabolite production linked to inflammation modulation by Bacteroides and their extracellular vesicles","authors":"Basit Yousuf , Walid Mottawea , Galal Ali Esmail , Nazila Nazemof , Nour Elhouda Bouhlel , Emmanuel Njoku , Yingxi Li , Xu Zhang , Zoran Minic , Riadh Hammami","doi":"10.1016/j.crmicr.2025.100358","DOIUrl":null,"url":null,"abstract":"<div><div><em>Bacteroides</em> species are key members of the human gut microbiome and play crucial roles in gut ecology, metabolism, and host-microbe interactions. This study investigated the strain-specific production of neuroactive metabolites by 18 Bacteroidetes (12 <em>Bacteroides</em>, 4 <em>Phocaeicola</em>, and 2 <em>Parabacteroides</em>) using multi-omics approaches. Genomic analysis revealed a significant potential for producing GABA, tryptophan, tyrosine, and histidine metabolism-linked neuroactive compounds. Using untargeted and targeted metabolomics, we identified key neurotransmitter-related or precursor metabolites, including GABA, <span>l</span>-tryptophan, 5-HTP, normelatonin, kynurenic acid, <span>l</span>-tyrosine, and norepinephrine, in a strain- and media-specific manner, with GABA (1–2 mM) being the most abundant. Additionally, extracellular vesicles (EVs) produced by <em>Bacteroides</em> harbor multiple neuroactive metabolites, mainly GABA, and related key enzymes. We used CRISPR/Cas12a-based gene engineering to create a knockout mutant lacking the glutamate decarboxylase gene (<em>gadB</em>) to demonstrate the specific contribution of <em>Bacteroides finegoldii</em>-derived GABA in modulating intestinal homeostasis. Cell-free supernatants from wild-type (WT, GABA+) and Δ<em>gadB</em> (GABA-) provided GABA-independent reinforcement of epithelial membrane integrity in LPS-treated Caco-2/HT29-MTX co-cultures. EVs from WT and Δ<em>gadB</em> attenuated inflammatory immune response of LPS-treated RAW264.7 macrophages, with reduced pro-inflammatory cytokines (IL-1β and IL-6), downregulation of TNF-α, and upregulation of IL-10 and TGF-β. GABA production by <em>B. finegoldii</em> had a limited impact on gut barrier integrity but a significant role in modulating inflammation. This study is the first to demonstrate the presence of a myriad of neuroactive metabolites produced by <em>Bacteroides</em> species in a strain- and media-specific manner in supernatant and EVs, with GABA being the most dominant metabolite and influencing immune responses.</div></div>","PeriodicalId":34305,"journal":{"name":"Current Research in Microbial Sciences","volume":"8 ","pages":"Article 100358"},"PeriodicalIF":4.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Microbial Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666517425000203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bacteroides species are key members of the human gut microbiome and play crucial roles in gut ecology, metabolism, and host-microbe interactions. This study investigated the strain-specific production of neuroactive metabolites by 18 Bacteroidetes (12 Bacteroides, 4 Phocaeicola, and 2 Parabacteroides) using multi-omics approaches. Genomic analysis revealed a significant potential for producing GABA, tryptophan, tyrosine, and histidine metabolism-linked neuroactive compounds. Using untargeted and targeted metabolomics, we identified key neurotransmitter-related or precursor metabolites, including GABA, l-tryptophan, 5-HTP, normelatonin, kynurenic acid, l-tyrosine, and norepinephrine, in a strain- and media-specific manner, with GABA (1–2 mM) being the most abundant. Additionally, extracellular vesicles (EVs) produced by Bacteroides harbor multiple neuroactive metabolites, mainly GABA, and related key enzymes. We used CRISPR/Cas12a-based gene engineering to create a knockout mutant lacking the glutamate decarboxylase gene (gadB) to demonstrate the specific contribution of Bacteroides finegoldii-derived GABA in modulating intestinal homeostasis. Cell-free supernatants from wild-type (WT, GABA+) and ΔgadB (GABA-) provided GABA-independent reinforcement of epithelial membrane integrity in LPS-treated Caco-2/HT29-MTX co-cultures. EVs from WT and ΔgadB attenuated inflammatory immune response of LPS-treated RAW264.7 macrophages, with reduced pro-inflammatory cytokines (IL-1β and IL-6), downregulation of TNF-α, and upregulation of IL-10 and TGF-β. GABA production by B. finegoldii had a limited impact on gut barrier integrity but a significant role in modulating inflammation. This study is the first to demonstrate the presence of a myriad of neuroactive metabolites produced by Bacteroides species in a strain- and media-specific manner in supernatant and EVs, with GABA being the most dominant metabolite and influencing immune responses.