{"title":"Highly efficient assessment and selective determination of pancreatic cancer biomarker CA-19-9 using co-electrodeposited MXene-AgNPs nanocomposite","authors":"Mahsa Mirzayi , Balal Khalilzadeh , Sattar Akbari Nakhjavani , Rahim Mohammad-Rezaei","doi":"10.1016/j.sbsr.2025.100753","DOIUrl":null,"url":null,"abstract":"<div><div>An ultrasensitive and label-free electrochemical immunosensor based on MXene-AgNPs nanocomposite is reported for pancreas cancer diagnostics. Ease of deposition, high speed, thickness of deposition and high efficiency of these biosensors are their special and fundamental advantages.</div><div>For this purpose, a pencil graphite electrode (PGE) was modified by silver and MXene (Ti3C2Tx (to increase efficiency and also the active surface area of PGE. Deposition of AgNPs-MXene nanocomposite then immobilization of streptavidin and biotinylated antibody on the electrode increases the sensitivity, conductivity and stability of the designed immunosensor. The electrochemical measurements in the attendance and absence of AgNPs-MXene can causing an increase in electrical currents. To examine the morphology of the developed immunosensor for the purpose of enhancing its optimal performance, the characterization methods employed include Field Emission Scanning Electron Microscopy (FE-SEM), Fourier-Transform Infrared Spectroscopy (FT-IR), and X-ray Diffraction (XRD). The results of the studies projected antibody (Ab) CA-19-9/AgNPs-MXene electrochemical immunosensor as a potential and affordable alternate of conventional methods like ELISA. The desirable LOD was recorded as 1 nU/mL. The repeatability and reproducibility were successfully inspected for ten repeated mensuration and the lowest RSD percentages were observed as about 5 % for the concentration of 1, 10 and 20 nU/mL. As a proof of the discussed results, the presented biosensor has a high sufficiency to be used in clinical laboratories to diagnose pancreatic cancer. We believe that our fabricated sensor can be the plan of diseases management program due to affordable rapid and label free detection of a targeted biomarkers.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"47 ","pages":"Article 100753"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensing and Bio-Sensing Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214180425000194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
An ultrasensitive and label-free electrochemical immunosensor based on MXene-AgNPs nanocomposite is reported for pancreas cancer diagnostics. Ease of deposition, high speed, thickness of deposition and high efficiency of these biosensors are their special and fundamental advantages.
For this purpose, a pencil graphite electrode (PGE) was modified by silver and MXene (Ti3C2Tx (to increase efficiency and also the active surface area of PGE. Deposition of AgNPs-MXene nanocomposite then immobilization of streptavidin and biotinylated antibody on the electrode increases the sensitivity, conductivity and stability of the designed immunosensor. The electrochemical measurements in the attendance and absence of AgNPs-MXene can causing an increase in electrical currents. To examine the morphology of the developed immunosensor for the purpose of enhancing its optimal performance, the characterization methods employed include Field Emission Scanning Electron Microscopy (FE-SEM), Fourier-Transform Infrared Spectroscopy (FT-IR), and X-ray Diffraction (XRD). The results of the studies projected antibody (Ab) CA-19-9/AgNPs-MXene electrochemical immunosensor as a potential and affordable alternate of conventional methods like ELISA. The desirable LOD was recorded as 1 nU/mL. The repeatability and reproducibility were successfully inspected for ten repeated mensuration and the lowest RSD percentages were observed as about 5 % for the concentration of 1, 10 and 20 nU/mL. As a proof of the discussed results, the presented biosensor has a high sufficiency to be used in clinical laboratories to diagnose pancreatic cancer. We believe that our fabricated sensor can be the plan of diseases management program due to affordable rapid and label free detection of a targeted biomarkers.
期刊介绍:
Sensing and Bio-Sensing Research is an open access journal dedicated to the research, design, development, and application of bio-sensing and sensing technologies. The editors will accept research papers, reviews, field trials, and validation studies that are of significant relevance. These submissions should describe new concepts, enhance understanding of the field, or offer insights into the practical application, manufacturing, and commercialization of bio-sensing and sensing technologies.
The journal covers a wide range of topics, including sensing principles and mechanisms, new materials development for transducers and recognition components, fabrication technology, and various types of sensors such as optical, electrochemical, mass-sensitive, gas, biosensors, and more. It also includes environmental, process control, and biomedical applications, signal processing, chemometrics, optoelectronic, mechanical, thermal, and magnetic sensors, as well as interface electronics. Additionally, it covers sensor systems and applications, µTAS (Micro Total Analysis Systems), development of solid-state devices for transducing physical signals, and analytical devices incorporating biological materials.