Statically recrystallized grain size as a function of prior stored energy level in the A-286 Fe-based superalloy

IF 3 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
A. Potenciano , A. Nicolay , A. Da Fonseca Alvarenga , O. Danylova , J. Dairon , M. Bernacki , B. Flipon , N. Bozzolo
{"title":"Statically recrystallized grain size as a function of prior stored energy level in the A-286 Fe-based superalloy","authors":"A. Potenciano ,&nbsp;A. Nicolay ,&nbsp;A. Da Fonseca Alvarenga ,&nbsp;O. Danylova ,&nbsp;J. Dairon ,&nbsp;M. Bernacki ,&nbsp;B. Flipon ,&nbsp;N. Bozzolo","doi":"10.1016/j.mtla.2025.102361","DOIUrl":null,"url":null,"abstract":"<div><div>A-286 alloy is a Fe-based superalloy used in various engines and gas turbine components. During manufacturing, this alloy is submitted to a solution heat treatment that provides good formability for the subsequent deformation steps. Hence, a good control of grain size evolution is required to avoid the formation of a broad grain size distribution or the growth of abnormally large grains. In this work, a well-controlled strain gradient has been generated by means of indentation tests at room temperature. A specific strain level, calculated by finite element simulations, and the associated dislocation density estimated by the EBSD technique, lead to the activation of selective grain growth during heat treatment after a given incubation time. This study on cold-deformed A-286 alloy allowed a quantitative assessment of recrystallized grain size dependence on stored energy and the identification of the critical stored energy value for grain nucleation, providing a better understanding of A-286 static recrystallization behavior.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"39 ","pages":"Article 102361"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589152925000286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A-286 alloy is a Fe-based superalloy used in various engines and gas turbine components. During manufacturing, this alloy is submitted to a solution heat treatment that provides good formability for the subsequent deformation steps. Hence, a good control of grain size evolution is required to avoid the formation of a broad grain size distribution or the growth of abnormally large grains. In this work, a well-controlled strain gradient has been generated by means of indentation tests at room temperature. A specific strain level, calculated by finite element simulations, and the associated dislocation density estimated by the EBSD technique, lead to the activation of selective grain growth during heat treatment after a given incubation time. This study on cold-deformed A-286 alloy allowed a quantitative assessment of recrystallized grain size dependence on stored energy and the identification of the critical stored energy value for grain nucleation, providing a better understanding of A-286 static recrystallization behavior.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materialia
Materialia MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.40
自引率
2.90%
发文量
345
审稿时长
36 days
期刊介绍: Materialia is a multidisciplinary journal of materials science and engineering that publishes original peer-reviewed research articles. Articles in Materialia advance the understanding of the relationship between processing, structure, property, and function of materials. Materialia publishes full-length research articles, review articles, and letters (short communications). In addition to receiving direct submissions, Materialia also accepts transfers from Acta Materialia, Inc. partner journals. Materialia offers authors the choice to publish on an open access model (with author fee), or on a subscription model (with no author fee).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信