{"title":"On the smallest positive eigenvalue of caterpillar unicyclic graphs","authors":"Sasmita Barik, Subhasish Behera","doi":"10.1016/j.dam.2025.02.002","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>G</mi></math></span> be a simple graph with the adjacency matrix <span><math><mrow><mi>A</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. By the smallest positive eigenvalue of <span><math><mi>G</mi></math></span>, we mean the smallest positive eigenvalue of <span><math><mrow><mi>A</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and denote it by <span><math><mrow><mi>τ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. For <span><math><mrow><mi>k</mi><mo>≥</mo><mn>3</mn></mrow></math></span>, let <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> be the cycle graph with vertices <span><math><mrow><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi></mrow></math></span> and <span><math><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></math></span> be <span><math><mi>k</mi></math></span> nonnegative integers. A caterpillar unicyclic graph <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> is a graph obtained from <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> by adding <span><math><msub><mrow><mi>n</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> pendant vertices to the vertex <span><math><mi>i</mi></math></span> of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>, for <span><math><mrow><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi></mrow></math></span>. Let <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> be the class of all caterpillar unicyclic graphs on <span><math><mi>n</mi></math></span> vertices, where each <span><math><msub><mrow><mi>n</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is positive. In this article, we obtain the graphs with the maximum <span><math><mi>τ</mi></math></span> among all the graphs in <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. Furthermore, we characterize the graphs <span><math><mi>G</mi></math></span> in <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> such that <span><math><mrow><mi>τ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><msqrt><mrow><mn>2</mn></mrow></msqrt><mo>−</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>τ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>></mo><msqrt><mrow><mn>2</mn></mrow></msqrt><mo>−</mo><mn>1</mn></mrow></math></span>, respectively. As a consequence, we obtain the graphs with the minimum <span><math><mi>τ</mi></math></span> among all the graphs in <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. Let <span><math><mi>Υ</mi></math></span> be the set of all smallest positive eigenvalues of the caterpillar unicyclic graphs in <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. We show that the largest limit point of <span><math><mi>Υ</mi></math></span> is not finite and the smallest limit point of <span><math><mi>Υ</mi></math></span> is <span><math><mrow><msqrt><mrow><mn>2</mn></mrow></msqrt><mo>−</mo><mn>1</mn></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"367 ","pages":"Pages 89-98"},"PeriodicalIF":1.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25000605","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a simple graph with the adjacency matrix . By the smallest positive eigenvalue of , we mean the smallest positive eigenvalue of and denote it by . For , let be the cycle graph with vertices and be nonnegative integers. A caterpillar unicyclic graph is a graph obtained from by adding pendant vertices to the vertex of , for . Let be the class of all caterpillar unicyclic graphs on vertices, where each is positive. In this article, we obtain the graphs with the maximum among all the graphs in . Furthermore, we characterize the graphs in such that and , respectively. As a consequence, we obtain the graphs with the minimum among all the graphs in . Let be the set of all smallest positive eigenvalues of the caterpillar unicyclic graphs in . We show that the largest limit point of is not finite and the smallest limit point of is .
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.