Qingxia Wang , Meiqi Chen , Jisheng Xu , Dandan Li , Jiabao Zhang , Bingzi Zhao
{"title":"Increased loss rate of straw-derived nitrogen following the woody peat addition is more significant in saline than in non-saline paddy soil","authors":"Qingxia Wang , Meiqi Chen , Jisheng Xu , Dandan Li , Jiabao Zhang , Bingzi Zhao","doi":"10.1016/j.apsoil.2025.105922","DOIUrl":null,"url":null,"abstract":"<div><div>Elucidating the biological mechanisms underlying the loss of straw-derived N is crucial for developing eco-friendly and cost-effective methods for straw return to the field; however, research on this topic is lacking, particularly an integrated comparison of the conditions for woody peat-amended and non-amended in saline and non-saline soils. In this study, a pot experiment was conducted to monitor N loss from maize (<em>Zea mays</em> L.) straw labeled with <sup>15</sup>N in saline (S) and non-saline (S0) soils with woody peat addition (W) or a control without woody peat addition (W0). Woody peat input tended to significantly increase the loss rate of straw-derived N (LSN) by 2.21 % in S0 soil and 10.02 % in S soil. In addition to the total N (TN), <em>narG</em> and <em>nirK</em> genes, a group of highly relevant bacterial taxa, greatly contributed to the LSN variations, although the bacterial taxa composition under W0 conditions was significantly different from that under W conditions. Furthermore, the composition of the bacterial community was determined and the taxa enriched and depleted following straw application were isolated. Under W conditions, the LSN was positively regulated by the recruited bacterial taxa and negatively regulated by the depleted bacterial taxa. However, the opposite was observed under W0 conditions. These highly relevant bacterial taxa contained different proportions of denitrifiers, further implicating their important role in mediating the loss of straw-derived N. Our results provide new insights into the driving factors of woody peat input to LSN in saline and non-saline soils, with implications for developing reasonable usage measures to control straw-N loss.</div></div>","PeriodicalId":8099,"journal":{"name":"Applied Soil Ecology","volume":"207 ","pages":"Article 105922"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soil Ecology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0929139325000605","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Elucidating the biological mechanisms underlying the loss of straw-derived N is crucial for developing eco-friendly and cost-effective methods for straw return to the field; however, research on this topic is lacking, particularly an integrated comparison of the conditions for woody peat-amended and non-amended in saline and non-saline soils. In this study, a pot experiment was conducted to monitor N loss from maize (Zea mays L.) straw labeled with 15N in saline (S) and non-saline (S0) soils with woody peat addition (W) or a control without woody peat addition (W0). Woody peat input tended to significantly increase the loss rate of straw-derived N (LSN) by 2.21 % in S0 soil and 10.02 % in S soil. In addition to the total N (TN), narG and nirK genes, a group of highly relevant bacterial taxa, greatly contributed to the LSN variations, although the bacterial taxa composition under W0 conditions was significantly different from that under W conditions. Furthermore, the composition of the bacterial community was determined and the taxa enriched and depleted following straw application were isolated. Under W conditions, the LSN was positively regulated by the recruited bacterial taxa and negatively regulated by the depleted bacterial taxa. However, the opposite was observed under W0 conditions. These highly relevant bacterial taxa contained different proportions of denitrifiers, further implicating their important role in mediating the loss of straw-derived N. Our results provide new insights into the driving factors of woody peat input to LSN in saline and non-saline soils, with implications for developing reasonable usage measures to control straw-N loss.
期刊介绍:
Applied Soil Ecology addresses the role of soil organisms and their interactions in relation to: sustainability and productivity, nutrient cycling and other soil processes, the maintenance of soil functions, the impact of human activities on soil ecosystems and bio(techno)logical control of soil-inhabiting pests, diseases and weeds.