GS-LinYOLOv10: A drone-based model for real-time construction site safety monitoring

IF 6.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Yang Song , ZhenLin Chen , Hua Yang , Jifei Liao
{"title":"GS-LinYOLOv10: A drone-based model for real-time construction site safety monitoring","authors":"Yang Song ,&nbsp;ZhenLin Chen ,&nbsp;Hua Yang ,&nbsp;Jifei Liao","doi":"10.1016/j.aej.2025.01.021","DOIUrl":null,"url":null,"abstract":"<div><div>Real-time safety monitoring on construction sites is essential for ensuring worker safety, but traditional detection methods face challenges in dynamic environments with moving objects, occlusions, and complex conditions. To address these limitations, we propose GS-LinYOLOv10, an improved model based on YOLOv10, specifically designed for drone-based safety monitoring. The GSConv module introduces a lightweight feature extraction mechanism, reducing computational complexity without compromising detection accuracy. The Linformer-based attention mechanism efficiently captures global context, addressing challenges in dynamic and complex environments. The model integrates IoT sensor data for real-time feedback, incorporates the GSConv module for lightweight feature extraction, and utilizes a Linformer-based attention mechanism to efficiently capture global context. These innovations reduce computational complexity while significantly improving detection accuracy. Experimental results show that GS-LinYOLOv10 achieves a precision of 91.2% and a mean average precision (mAP) of 89.4%, outperforming existing models. The integration of IoT sensors allows the drone system to dynamically adjust its monitoring focus, improving adaptability to changing environments and enhancing hazard detection. This research provides an advanced, drone-based IoT-enhanced solution for real-time construction site safety monitoring, offering a more effective and efficient approach to safety management.</div></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":"120 ","pages":"Pages 62-73"},"PeriodicalIF":6.2000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016825000304","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Real-time safety monitoring on construction sites is essential for ensuring worker safety, but traditional detection methods face challenges in dynamic environments with moving objects, occlusions, and complex conditions. To address these limitations, we propose GS-LinYOLOv10, an improved model based on YOLOv10, specifically designed for drone-based safety monitoring. The GSConv module introduces a lightweight feature extraction mechanism, reducing computational complexity without compromising detection accuracy. The Linformer-based attention mechanism efficiently captures global context, addressing challenges in dynamic and complex environments. The model integrates IoT sensor data for real-time feedback, incorporates the GSConv module for lightweight feature extraction, and utilizes a Linformer-based attention mechanism to efficiently capture global context. These innovations reduce computational complexity while significantly improving detection accuracy. Experimental results show that GS-LinYOLOv10 achieves a precision of 91.2% and a mean average precision (mAP) of 89.4%, outperforming existing models. The integration of IoT sensors allows the drone system to dynamically adjust its monitoring focus, improving adaptability to changing environments and enhancing hazard detection. This research provides an advanced, drone-based IoT-enhanced solution for real-time construction site safety monitoring, offering a more effective and efficient approach to safety management.
求助全文
约1分钟内获得全文 求助全文
来源期刊
alexandria engineering journal
alexandria engineering journal Engineering-General Engineering
CiteScore
11.20
自引率
4.40%
发文量
1015
审稿时长
43 days
期刊介绍: Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification: • Mechanical, Production, Marine and Textile Engineering • Electrical Engineering, Computer Science and Nuclear Engineering • Civil and Architecture Engineering • Chemical Engineering and Applied Sciences • Environmental Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信