{"title":"GS-LinYOLOv10: A drone-based model for real-time construction site safety monitoring","authors":"Yang Song , ZhenLin Chen , Hua Yang , Jifei Liao","doi":"10.1016/j.aej.2025.01.021","DOIUrl":null,"url":null,"abstract":"<div><div>Real-time safety monitoring on construction sites is essential for ensuring worker safety, but traditional detection methods face challenges in dynamic environments with moving objects, occlusions, and complex conditions. To address these limitations, we propose GS-LinYOLOv10, an improved model based on YOLOv10, specifically designed for drone-based safety monitoring. The GSConv module introduces a lightweight feature extraction mechanism, reducing computational complexity without compromising detection accuracy. The Linformer-based attention mechanism efficiently captures global context, addressing challenges in dynamic and complex environments. The model integrates IoT sensor data for real-time feedback, incorporates the GSConv module for lightweight feature extraction, and utilizes a Linformer-based attention mechanism to efficiently capture global context. These innovations reduce computational complexity while significantly improving detection accuracy. Experimental results show that GS-LinYOLOv10 achieves a precision of 91.2% and a mean average precision (mAP) of 89.4%, outperforming existing models. The integration of IoT sensors allows the drone system to dynamically adjust its monitoring focus, improving adaptability to changing environments and enhancing hazard detection. This research provides an advanced, drone-based IoT-enhanced solution for real-time construction site safety monitoring, offering a more effective and efficient approach to safety management.</div></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":"120 ","pages":"Pages 62-73"},"PeriodicalIF":6.2000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016825000304","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Real-time safety monitoring on construction sites is essential for ensuring worker safety, but traditional detection methods face challenges in dynamic environments with moving objects, occlusions, and complex conditions. To address these limitations, we propose GS-LinYOLOv10, an improved model based on YOLOv10, specifically designed for drone-based safety monitoring. The GSConv module introduces a lightweight feature extraction mechanism, reducing computational complexity without compromising detection accuracy. The Linformer-based attention mechanism efficiently captures global context, addressing challenges in dynamic and complex environments. The model integrates IoT sensor data for real-time feedback, incorporates the GSConv module for lightweight feature extraction, and utilizes a Linformer-based attention mechanism to efficiently capture global context. These innovations reduce computational complexity while significantly improving detection accuracy. Experimental results show that GS-LinYOLOv10 achieves a precision of 91.2% and a mean average precision (mAP) of 89.4%, outperforming existing models. The integration of IoT sensors allows the drone system to dynamically adjust its monitoring focus, improving adaptability to changing environments and enhancing hazard detection. This research provides an advanced, drone-based IoT-enhanced solution for real-time construction site safety monitoring, offering a more effective and efficient approach to safety management.
期刊介绍:
Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification:
• Mechanical, Production, Marine and Textile Engineering
• Electrical Engineering, Computer Science and Nuclear Engineering
• Civil and Architecture Engineering
• Chemical Engineering and Applied Sciences
• Environmental Engineering