Micro-mechanism of mechanical enhancement of NiTiAl amorphous-crystal nanomultilayers

IF 7.1 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Yuanwei Pu , Yongchao Liang , Yu Zhou , Qian Chen , Tinghong Gao , Lili Zhou , Zean Tian
{"title":"Micro-mechanism of mechanical enhancement of NiTiAl amorphous-crystal nanomultilayers","authors":"Yuanwei Pu ,&nbsp;Yongchao Liang ,&nbsp;Yu Zhou ,&nbsp;Qian Chen ,&nbsp;Tinghong Gao ,&nbsp;Lili Zhou ,&nbsp;Zean Tian","doi":"10.1016/j.ijmecsci.2025.110020","DOIUrl":null,"url":null,"abstract":"<div><div>Amorphous-crystal nanomultilayers (ACNMs) exhibit outstanding mechanical properties, but the micro-mechanisms responsible for the enhancement of their mechanical performance remain incompletely understood. Molecular dynamics (MD) simulations were performed on the tensile processes of NiTiAl ACNMs to examine the microstructure evolutions during deformation in crystals, amorphous (MGs), and crystal-amorphous interfaces (CAIs). ACNMs increase in strength and decrease in plasticity with decreasing interface spacing. The MGs layer can accommodate larger strains. The intense competition among shear transformation zones (STZs) mitigates strain localization in MGs and boosts the plasticity of ACNMs. In the crystal layer, the main plastic deformation mechanism is that FCC clusters are disrupted and converted into other MGs clusters. As the interface spacing decreases, the geometrically constrained dispersion of STZs boosts material strength. The self-developed Largest Standard Cluster Analysis (LaSCA) method was employed to accurately depict the microstructure evolution of CAIs. The CAIs are responsible for strain transmission and induce dislocation accumulation in their vicinity, leading to localized strain. This study elucidates the microstructural changes in ACNMs during tensile deformation, offering insights for optimizing their mechanical properties through interface spacing design.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"288 ","pages":"Article 110020"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020740325001067","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Amorphous-crystal nanomultilayers (ACNMs) exhibit outstanding mechanical properties, but the micro-mechanisms responsible for the enhancement of their mechanical performance remain incompletely understood. Molecular dynamics (MD) simulations were performed on the tensile processes of NiTiAl ACNMs to examine the microstructure evolutions during deformation in crystals, amorphous (MGs), and crystal-amorphous interfaces (CAIs). ACNMs increase in strength and decrease in plasticity with decreasing interface spacing. The MGs layer can accommodate larger strains. The intense competition among shear transformation zones (STZs) mitigates strain localization in MGs and boosts the plasticity of ACNMs. In the crystal layer, the main plastic deformation mechanism is that FCC clusters are disrupted and converted into other MGs clusters. As the interface spacing decreases, the geometrically constrained dispersion of STZs boosts material strength. The self-developed Largest Standard Cluster Analysis (LaSCA) method was employed to accurately depict the microstructure evolution of CAIs. The CAIs are responsible for strain transmission and induce dislocation accumulation in their vicinity, leading to localized strain. This study elucidates the microstructural changes in ACNMs during tensile deformation, offering insights for optimizing their mechanical properties through interface spacing design.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Mechanical Sciences
International Journal of Mechanical Sciences 工程技术-工程:机械
CiteScore
12.80
自引率
17.80%
发文量
769
审稿时长
19 days
期刊介绍: The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering. The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture). Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content. In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信