Energy-efficient microwave heating for rapid fabrication of porous carbon nanofibers

IF 7.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Haoyue Zhao, Xinyu Li, Fangqin Su, Ning Qi, Jian Fang
{"title":"Energy-efficient microwave heating for rapid fabrication of porous carbon nanofibers","authors":"Haoyue Zhao,&nbsp;Xinyu Li,&nbsp;Fangqin Su,&nbsp;Ning Qi,&nbsp;Jian Fang","doi":"10.1016/j.matdes.2025.113702","DOIUrl":null,"url":null,"abstract":"<div><div>High-temperature heat treatment is a crucial thermochemical process for pyrolysis/carbonization of carbon nanofibers (CNFs). However, the inefficient heat transfer process of traditional heating methods often results in inhomogeneous heating, low porosity, long preparation times, and high energy consumption. Here, we first use electrospinning and microwave heating techniques to rapidly fabricate porous CNFs with the help of microwave absorbers. To deeply understand the microwave heating mechanism and differences with traditional heating, we systematically investigate and analyze the effects of the type and concentration of the microwave absorbers, microwave heating parameters, and two heating mechanisms (microwave and traditional heating) on the fabrication of CNFs by experimental investigation and COMSOL simulations. Such microwave heating technique can enable an ultrafast heating rate (up to 250 °C min<sup>−1</sup> on average). Due to the rapid internal and volumetric heating, CNFs prepared using microwave heating exhibit a larger carbon content (92.86 %) and a larger BET specific surface area (687 m<sup>2</sup>/g) than their counterparts prepared using traditional heating methods (88.49 % and 460.7 m<sup>2</sup>/g). Moreover, the possible mechanisms of microwave heating have been explained. ​This work paves the way for the fabrication of porous CNFs and other advanced carbon nanomaterials using microwave heating techniques.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"251 ","pages":"Article 113702"},"PeriodicalIF":7.6000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127525001224","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

High-temperature heat treatment is a crucial thermochemical process for pyrolysis/carbonization of carbon nanofibers (CNFs). However, the inefficient heat transfer process of traditional heating methods often results in inhomogeneous heating, low porosity, long preparation times, and high energy consumption. Here, we first use electrospinning and microwave heating techniques to rapidly fabricate porous CNFs with the help of microwave absorbers. To deeply understand the microwave heating mechanism and differences with traditional heating, we systematically investigate and analyze the effects of the type and concentration of the microwave absorbers, microwave heating parameters, and two heating mechanisms (microwave and traditional heating) on the fabrication of CNFs by experimental investigation and COMSOL simulations. Such microwave heating technique can enable an ultrafast heating rate (up to 250 °C min−1 on average). Due to the rapid internal and volumetric heating, CNFs prepared using microwave heating exhibit a larger carbon content (92.86 %) and a larger BET specific surface area (687 m2/g) than their counterparts prepared using traditional heating methods (88.49 % and 460.7 m2/g). Moreover, the possible mechanisms of microwave heating have been explained. ​This work paves the way for the fabrication of porous CNFs and other advanced carbon nanomaterials using microwave heating techniques.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials & Design
Materials & Design Engineering-Mechanical Engineering
CiteScore
14.30
自引率
7.10%
发文量
1028
审稿时长
85 days
期刊介绍: Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry. The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信