Akanksha Singh , Sze Ling Ho , Min-Te Chen , Pei-Ling Wang , Martin Jakobsson , Richard Gyllencreutz , Ludvig Löwemark
{"title":"Spatial distribution of n-alkanes and GDGTs in the central Arctic Ocean during Marine Isotope Stages 1, 2 and 3","authors":"Akanksha Singh , Sze Ling Ho , Min-Te Chen , Pei-Ling Wang , Martin Jakobsson , Richard Gyllencreutz , Ludvig Löwemark","doi":"10.1016/j.orggeochem.2024.104920","DOIUrl":null,"url":null,"abstract":"<div><div>Arctic sea ice affects Earth’s albedo, marine productivity and organic matter (OM) transport. Lipid biomarkers have been used to trace OM transport in the Arctic Ocean, but uncertainties remain regarding their spatio-temporal variations and sources over the last glacial cycle. Our study addresses these gaps by analyzing glycerol dialkyl glycerol tetraethers (GDGTs), <em>n</em>-alkanes, and total organic carbon (TOC) in nine central Arctic sediment cores spanning the Marine Isotope Stages (MISs) 3–1. Elevated IIIa/IIa values of branched GDGTs (brGDGTs) in the central Arctic throughout the studied interval suggest a marine origin, contrasting to the #rings<sub>tetra</sub> ratios which indicate a terrigenous brGDGT source. We propose that the IIIa/IIa ratio may be a more sensitive indicator of in situ brGDGT production in the central Arctic marine sediments. TOC and biomarker concentrations in the Central Lomonosov Ridge (CLR) cores were higher compared to those from the Lomonosov Ridge off Greenland (LRG) and Morris Jesup Rise (MJR) cores. Low productivity in the central Arctic, along with similarity in the spatial patterns of marine-derived brGDGTs and isoprenoid GDGTs, as well as terrestrial long-chain <em>n</em>-alkanes, suggests that these biomarkers are primarily transported to the central Arctic from the Siberian shelves. This spatial pattern persisted throughout MISs 3–1, suggesting continued sea ice drift during glacial periods, albeit with weakened intensities. Meanwhile, the spatiotemporal variations of the Branched Isoprenoid Tetraether (BIT) index in the region plausibly reflect the relative changes in the crenarchaeol and brGDGT production on the shelf and/or selective degradation of crenarchaeol during its transport.</div></div>","PeriodicalId":400,"journal":{"name":"Organic Geochemistry","volume":"201 ","pages":"Article 104920"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0146638024001852","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Arctic sea ice affects Earth’s albedo, marine productivity and organic matter (OM) transport. Lipid biomarkers have been used to trace OM transport in the Arctic Ocean, but uncertainties remain regarding their spatio-temporal variations and sources over the last glacial cycle. Our study addresses these gaps by analyzing glycerol dialkyl glycerol tetraethers (GDGTs), n-alkanes, and total organic carbon (TOC) in nine central Arctic sediment cores spanning the Marine Isotope Stages (MISs) 3–1. Elevated IIIa/IIa values of branched GDGTs (brGDGTs) in the central Arctic throughout the studied interval suggest a marine origin, contrasting to the #ringstetra ratios which indicate a terrigenous brGDGT source. We propose that the IIIa/IIa ratio may be a more sensitive indicator of in situ brGDGT production in the central Arctic marine sediments. TOC and biomarker concentrations in the Central Lomonosov Ridge (CLR) cores were higher compared to those from the Lomonosov Ridge off Greenland (LRG) and Morris Jesup Rise (MJR) cores. Low productivity in the central Arctic, along with similarity in the spatial patterns of marine-derived brGDGTs and isoprenoid GDGTs, as well as terrestrial long-chain n-alkanes, suggests that these biomarkers are primarily transported to the central Arctic from the Siberian shelves. This spatial pattern persisted throughout MISs 3–1, suggesting continued sea ice drift during glacial periods, albeit with weakened intensities. Meanwhile, the spatiotemporal variations of the Branched Isoprenoid Tetraether (BIT) index in the region plausibly reflect the relative changes in the crenarchaeol and brGDGT production on the shelf and/or selective degradation of crenarchaeol during its transport.
期刊介绍:
Organic Geochemistry serves as the only dedicated medium for the publication of peer-reviewed research on all phases of geochemistry in which organic compounds play a major role. The Editors welcome contributions covering a wide spectrum of subjects in the geosciences broadly based on organic chemistry (including molecular and isotopic geochemistry), and involving geology, biogeochemistry, environmental geochemistry, chemical oceanography and hydrology.
The scope of the journal includes research involving petroleum (including natural gas), coal, organic matter in the aqueous environment and recent sediments, organic-rich rocks and soils and the role of organics in the geochemical cycling of the elements.
Sedimentological, paleontological and organic petrographic studies will also be considered for publication, provided that they are geochemically oriented. Papers cover the full range of research activities in organic geochemistry, and include comprehensive review articles, technical communications, discussion/reply correspondence and short technical notes. Peer-reviews organised through three Chief Editors and a staff of Associate Editors, are conducted by well known, respected scientists from academia, government and industry. The journal also publishes reviews of books, announcements of important conferences and meetings and other matters of direct interest to the organic geochemical community.